Выветривание

процесс разрушения и изменения горных пород в условиях земной поверхности под влиянием механического и химического воздействия атмосферы, грунтовых и поверхностных вод и организмов. По характеру среды, в которой происходит В., различают атмосферное и подводное (см. Гальмиролиз). По роду воздействия В. на горные породы различают: физическое В., ведущее только к механическому распаду породы на обломки; химическое В., при котором изменяется химический состав горной породы с образованием минералов, более стойких в условиях земной поверхности; органическое (биологическое) В., сводящееся к механическому раздроблению или химическому изменению породы в результате жизнедеятельности организмов. Своеобразным типом В. является почвообразование, при котором особенно активную роль играют биологические факторы. В. горных пород совершается под влиянием воды (атмосферные осадки и грунтовые воды), углекислоты и кислорода, водяных паров, атмосферного и грунтового воздуха, сезонных и суточных колебаний температуры, жизнедеятельности макро- и микроорганизмов и продуктов их разложения. На скорость и степень В., мощность продуктов В. и на их состав, кроме перечисленных агентов, влияют также рельеф и геологическое строение местности, состав и структура материнских пород. Подавляющая масса физических и химических процессов В. (окисление, сорбция, гидратация, коагуляция) происходит с выделением энергии. Обычно виды В. действуют одновременно, но в зависимости от климата тот или иной из них преобладает. Физическое В. происходит главным образом в условиях сухого и жаркого климата и связано с резкими колебаниями температуры горных пород при нагревании солнечными лучами (инсоляция) и последующем ночном охлаждении; быстрое изменение объёма поверхностных частей пород ведёт при этом к их растрескиванию. В областях с частыми колебаниями температуры около 0°С механическое разрушение пород происходит под влиянием морозного В.; при замерзании воды, проникшей в трещины, объём ее увеличивается и порода разрывается. Химические и органические В. свойственны главным образом пластам с влажным климатом. Основные факторы химического В. - воздух и особенно вода, содержащая соли, кислоты и щелочи. Водные растворы, циркулирующие в толще пород, помимо простого растворения, способны производить также сложные химические изменения.

Физические и химические процессы В. происходят в тесной взаимосвязи с развитием и жизнедеятельностью животных и растений и действиям продуктов их распада после смерти. Наиболее благоприятными для образования и сохранения продуктов В. (минералов) вместе являются условия тропического или субтропического климата и незначительное эрозионное расчленение рельефа. При этом толще горных пород, подвергшихся В., свойственна (в направлении сверху вниз) геохимическая зональность, выраженная характерным для каждой зоны комплексом минералов. Последние образуются в результате следующих друг за другом процессов: распада пород под влиянием физического В., выщелачивания оснований, гидратации, гидролиза и окисления. Эти процессы часто идут до полного разложения первичных минералов, вплоть до образования свободных окислов и гидроокислов. В зависимости от степени кислотности - щёлочности среды, участия биогенных факторов образуются минералы различного химического состава: от устойчивых в щелочной среде (в нижних горизонтах) до устойчивых в кислой или нейтральной среде (в верхних горизонтах). Разнообразие продуктов В., представленных различными минералами, определяется составом минералов первичных горных пород. Например, на ультраосновных породах (Серпентинит ах) верхняя зона представлена породами, в трещинах которых образуются карбонаты (Магнезит , Доломит), керолиты, сепиолит. Далее следуют горизонты: карбонатизации (кальцит, доломит, Арагонит), в верхней части которого по трещинам могут образоваться никелевые керолиты, Гарниерит , гидролиза, с которым связано образование Нонтронит а и накопление никеля (NiO до 2,5%): окремнения (Кварц , Опал , Халцедон). Зона конечного гидролиза и окисления сложена гидрогётитом (охристым), Гётит ом, Магнетит ом, окислами и гидроокислами марганца (никель и кобальтсодержащими). С процессами В. этого типа пород связаны крупные месторождения никеля, кобальта, магнезита и природно-легированных железных руд.

На карбонатитах (См. Карбонатиты), первично состоящих более чем на 90% из Кальцит а, Анкерит а или Сидерит а и небольшого количества минералов-примесей (пироксенов (См. Пироксены), амфиболов (См. Амфиболы), тантало-ниобатов (См. Тантало-ниобаты) и редкоземельных минералов), конечные продукты В. становятся рыхлыми. В результате окисления карбонатов накапливаются гидроокислы железа, а окислы кальция и магния подвергаются существенному выносу, что приводит к увеличению содержания минералов-примесей, устойчивых в гипергенных условиях. В связи с этим свежие карбонатиты даже при ничтожном содержании ниобия, тантала, редких земель и фосфора при В. могут дать промышленные месторождения этих элементов. При В. угля (физическом) происходят его разрыхление до образования угольной сажи, потеря блеска, изменение мощности пластов; в составе углей при химическом В. содержание углерода, водорода уменьшается, а кислорода в органической массе увеличивается, кроме того, увеличивается влажность угля, понижается способность его к спеканию, уменьшается теплопроводность.

В тех случаях, когда продукты В. не остаются на месте своего образования, а уносятся с поверхности выветривающихся пород водой или ветром, нередко возникают своеобразные формы рельефа, зависящие как от характера В., так и от свойств горных пород, в которых процесс как бы проявляет и подчеркивает особенности их строения. Для изверженных пород (гранитов, диабазов и др.) характерны массивные округлённые формы В.; для слоистых осадочных и метаморфических - ступенчатые (карнизы, ниши и т.п.). Неоднородность пород и неодинаковая устойчивость их различных участков против В. ведёт к образованию останцов в виде изолированных гор, столбов, башен и т.п. Во влажном климате на наклонных поверхностях однородных сравнительно легко растворимых в воде пород, например, известняков, стекающие воды разъедают неправильной формы углубления, разделённые острыми выступами и гребнями, в результате чего образуется неровная поверхность, известная под названием карров (См. Карры). В процессе перерождения остаточных продуктов В. образуется много растворимых соединений, которые сносятся грунтовой водой в водные бассейны и входят в состав растворённых солей или выпадают в осадок. Процессы В. приводят к образованию различных осадочных пород и многих полезных ископаемых: каолинов, охр, огнеупорных глин, песков, руд железа, алюминия, марганца, никеля, кобальта, россыпей золота, платины и др., зон окисления колчеданных месторождений с их полезными ископаемыми и др.

Лит.: Гинзбург И. И., Образование древней коры выветривания на территории СССР, её минералы и их свойства, в кн.: Труды юбилейной сессии, посвященной 100-летию со дня рождения В. В. Докучаева, М. - Л., 1949; Казанский Ю. П., Выветривание и его роль в осадконакоплении, М., 1969: Выветривание и литогенез, М., 1969.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Выветривание" в других словарях:

    ВЫВЕТРИВАНИЕ, в геологии и физической географии разрушение и химическое изменение горных пород и минералов на поверхности Земли в результате физических, химических и органических процессов. Влияет на образование почвы и играет основную роль в… … Научно-технический энциклопедический словарь

    Выветривание - Совокупность процессов физического, химического и биологического разрушения минералов и горных пород верхней части литосферы под влиянием колебаний температуры, влажности, воздействия газов (атмосферных и растворенных в воде), растений и т.п.… … Словарь-справочник терминов нормативно-технической документации

    ВЫВЕТРИВАНИЕ, выветривания, мн. нет, ср. 1. Действие по гл. выветривать. Выветривание дурного запаха из комнаты. 2. Действие по гл. выветриваться (геол.). Выветривание шпата и гранита. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Основа почвообразовательного процесса, заключающаяся в превращении твердых горных пород в рыхлые образования. Разрушению породы, лежащей в основании почвенного горизонта или же на недавно обнажившейся поверхности, способствуют физические… … Экологический словарь

    Процесс изменения и разрушения минералов и г. п. на поверхности Земли под воздействием физ., хим. и орг. агентов. Различают физ. (механическое) и хим. В. Некоторые выделяют также орг. В. Физическое В. происходит под воздействием изменения… … Геологическая энциклопедия

    Акватолиз, гарь, исчезание, исчезновение, латеритизация, гальмиролиз Словарь русских синонимов. выветривание сущ., кол во синонимов: 8 акватолиз (2) … Словарь синонимов

    выветривание - Процесс изменения и разрушения минералов и горных пород на поверхности Земли под воздействием физических, химических и органических агентов. [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] [Словарь геологических… … Справочник технического переводчика

    Процесс разрушения и химического изменения горных пород в условиях земной поверхности или вблизи нее под влиянием колебаний температуры, химического и механического воздействия атмосферы, воды и организмов. Различают физические (механические),… … Большой Энциклопедический словарь

Происходит на протяжении всего . Осуществляется оно различными по направлению геологическими процессами.

Гора Монсеррат в Испании

Одни геологические процессы обусловлены воздействием:

  1. атмосферы,
  2. гидросферы,
  3. биосферы;

Другие - связаны с недрами Земли.

Донецкий кряж

Рассмотреть, как время разрушает камень, можно на примере Донбасса. В процессе выветривания мощный Донец­кий кряж превратился в степь.

Проезжая по Донбассу, например от Константиновки на Гор­ловку - столицу старейшего каменноугольного бассей­на и дальше на Иловатскую, или другим маршрутом - от Лу­ганска на Шахты, - нигде нет особенных неровностей рельефа.

В результате бурных горообразовательных процессов толщи девонских и каменноугольных отложений были смяты в складки и разбиты трещинами, по которым происходили перемещения отдельных участков земной коры. Образовался могучий Донец­кий кряж, и современному овражно-степному ландшафту в то далекое время отвечал горный ландшафт с высокими вершинами отдельных гор, с глубокими, мрачными ущельями, бурными по­токами.

Сейчас от этих гор ничего не осталось. Процессы выветривания постепенно разрушали горные породы, слагавшие Донецкий кряж, вода и ветер сгружали с него продукты выветривания, и сейчас о древних горах можно судить только по тем складкам, которые лежат глубоко под, землей.

Зная направление и наклон пластов этих разрушенных под­земных складок, а геологи умеют точно их определять, можно мысленно восстановить на бумаге «воздушные складки» и по ним сделать правильные выводы о древнем рельефе Донбасса.


Мысленное восстановление разрушенных складок гор

Внимательное изучение угленосной толщи Донбасса позво­лило выделить до двухсот прослоев и пластов различной мощ­ности. Это значит, что та территория, которую занимает Донбасс, испытала до двухсот поднятий и опусканий. Это значит, что двести раз последова­тельно вновь вырастала мощная растительность и снова скры­валась в пучинах древних морей.

Залежи угля встречаются:

  1. в виде гнезд значительной ве­личины,
  2. в виде пластов, покрывающих огромные площади.

Залежи первого типа форми­ровались в замкнутых водо­емах - в озерных котлови­нах, а второго типа, наобо­рот - в огромных водных бассейнах. Ко второму типу залежей относится Донбасс.

Виды выветривания

Под воздействием раз­личных видов выветривания:

постепенно и незаметно раз­рушались горы; точно также постепенно огромные участки суши заливались морем и, наоборот, морское дно в результате его поднятий ста­новилось сушей.

История Донбасса и обнажения реки Йеллоустон (на Северо-Западе США), с пятнадцатью горизонтами окаменевших деревьев, дают в этом убедительные подтверждения.


Река Йеллоустон со скалистыми берегами из окаменевших деревьев

Морские осадки часто сми­нались в складки, образуя высокие горы.

Воздействие атмосферы на горные породы

Воздействие атмосферы на горные породы проявляется в изменении температурного режима и работе ветра .

Колебание температуры разрушает горные породы

В высокогорных районах и пустынях наблюдаются резкие колебания температуры в течение суток, особенно летом; в пол­день нестерпимо печет солнце, а ночью резко холодает. Камень днем сильно нагревается, а ночью остывает.

Эти различия не могут не отразиться на ослаблении связи меж­ду отдельными минеральными зернами, составляющими породу, при этом чем крупнее зерно и темнее окраска породы, тем силь­нее идет этот процесс.

Постепенно на поверхности камня обра­зуются трещины. В них проникает вода, напитывает породу и, замерзая в мороз, заметно увеличивает свой объем. Трещины становятся все глубже и шире, пока, наконец, камень не ото­рвется от утеса.


Разрушение горных пород

В тихую морозную ночь или весной, когда тает снег в горах, бывает отчетливо слышен треск отрыва породы, - и загремит потом глыба по каменному скату, или зашуршит, сползая по осыпи к ее краю. Бывает и так, что огромная глыба в результате сильного перегрева распадается на месте на отдельные куски, как очищен­ный апельсин на составляющие его дольки.

Камни различной стадии разрушения встречаются часто в гористой пустыне, например в Центральной Азии, в Восточной Сахаре, в Атласских горах (Северная Африка), в горах Кавказа и Крыма. Валуны и различной формы каменные обломки бывают настолько разбитые трещинами, что камень легко распадается при слабом на­жиме руки.

Матрацевидная отдельность

Встречаются трещины и другого рода. Они наблюдаются нередко на гранитах и называются трещинами отдельности так как отчетливо разбивают породу на отдельности в виде глыб блоков. Порода, разбитая трещинами отдельности, напоминает матраци, наваленные в беспорядке друг на друга. Отсюда и название - матрацевидная отдельность .


Происхождение этой отдельности объясняется тем, что при остывании расплавленной магмы в недрах земли на породе образовались горизонтальные и вертикальные трещины. Когда же порода оказалась на поверхности земли, эти трещины в результате воздействия процессов выветривания значительно расширились и отчетливо наметили разделение породы на отдельности.

Выветривание таких крупнозернистых пород , как некоторые виды гранитов, (подробнее: ), протекает иногда весьма своеобразно. Геологи называют его шелушением камня. И, действительно, с поверх­ности камня, словно шелуха, начинают постепенно отваливать­ся отдельными плитками куски породы.


Этот материал накап­ливается у подножия валуна или утеса, который постепенно принимает округлую форму.

Загар или лак пустыни

Особую форму выветривания , еще недостаточно изученную, представляет образование так называемого загара или ла­ка пустыни . Мрачным черным налетом он по­крывает утесы и отдель­ные камни особенно твердых и мелкозерни­стых пород. В пасмур­ную погоду эта мрачная окраска производит гнетущее впечатление, и только под лучами солнца оживает характерный облик пустыни.


Загар пустыни по­крывает тонкой плен­кой лишь освещаемые солнцем участки поро­ды. Та сторона камня, которой он лежит на земле, обычно не загорает. Скрывая истинный цвет камня и его строение, загар пустыни затрудняет без геологического молот­ка полевое определение пород, слагающих утесы, но стоит только ударить молотком - и под черным лаком налета обнаруживается хорошо знакомый гранит или другая порода.

Но представление о значении выветрива­ния в жизни Земли будет далеко не полным, если не ознакомиться с такими формами рельефа, которые позволяют судить о далеком прошлом той страны, в которой они сохранились.

В пустыне можно увидеть отдельные столообраз­ные возвышенности, сложенные параллельно лежащими пласта­ми пород. Хотя эти возвышенности и расположены далеко друг от друга, однако по слагающим породам нетрудно заключить что когда-то они представляли единое целое.


Теперь можно только догадываться об исчезнувших пластах: очевидно, они были сложены более мягкими породами, слабее сопротивляю­щимися процессам выветривания, их размывали воды, развева­ли ветры,- и только эти одинокие возвышенности остались молчаливыми свидетелями далекого прошлого. Их так и назы­вают каменными останцами .

Подобные формы рельефа часто носят названия столбов, башен, игол, столов, грибов и т. п., подтверждая тем самым внешнее сходство с теми предметами, которые они нам напоми­нают. Иногда в столбах наблюдаются черты сходства с фигурой или лицом человека, тогда их называют «дед», «старик и ста­руха», «братья», «каменные болваны» и т. п.

В пустыне Джунгарии, на берегу реки Дям, а также в Севе­ро-Восточном Китае, Синьцзяне наблюдается значительное раз­нообразие форм рельефа. Особенно их много в одном районе. По внешнему сходству они местами напоминают развалины города, от которого сохранились только отдельные башни, полу­разрушенные крепостные стены, дома, улицы.


Эоловый город в Китае

В образовании этих причудливых форм рельефа большое участие принимал ветер, недаром геологи и назвали этот замечательный район Джунгарской пустыни «эоловым городом» (по верованиям древ­них греков, Эол - повелитель ветров).

Следы работы ветра в формировании рельефа особенно за­метны на высокогорных хребтах, где ветер достигает значительной силы, а также в пустынях, где есть ему разгуляться. В пу­стынях всегда дуют ветры. Недаром жители пустынь называют ветер «хозяином пустыни», который принимает участие в процессах выветривания.


Процесс выветривания в пустыне

Ослабление связи между отдельными минеральными зерна­ми, составляющими породу, приводит к тому, что камень посте­пенно начинает выкрашиваться. Ветер углубляет выветривание горных пород не только тем, что выдувает отдельные неустойчивые зернышки породы, но и дальше разрушает ее по­стоянными ударами мириадов песчинок.

Так постепенно даже в гранитах образуются углубления, или ниши выдувания , как их называют геологи. В мягких породах, как мергели, иначе глинистые известняки, и в песчаниках ниши достигают достигают иногда значительных размеров, например в окрестностях Бахчисарая (в Крыму) и Кисловодска, особенно по дороге на скалу Лермонтова.

Ниши в мягких породах встречаются не только значительных размеров и глубин, но даже иногда насквозь пробивают отдель­ные утесы, оказывающие препятствие движению ветра. Такова например, Кольцо-гора на левом берегу реки Подкумок - место постоянных экскурсий отдыхающих в кисловодских санаториях.


На отвесных обрывах в мягких породах можно наблюдать образование небольших неровностей, возникающих под воздействием продолжительной работы песка и ветра. По внешнему виду эти неровности могут иметь общее сходство и с кружевами и с пчелиными сотами, только значительно увеличенные, отсюда и название сотовое или ячеистое, выветривание . Оно часто встречается в местах выходов мергелистых, известняковых и других пород, например в окрестностях Бахчисарая и Кисловодска.

Местами камень непосредственно выходит на поверхность Земли или неглубоко залегает под слоем почвы. В горных странах на месте даже неглубоких выемок можно проследить, как почва постепенно переходит в ту породу, на которой она залегает. Значит, камень превратился в почву? Как же в этом можно убедиться?

Воздействие биосферы на процесс выветри­вания

Лишаи, мхи и другие растения, поселяющиеся непосредственно на голом камне и в трещинах скал, и особенно мельчайшие организмы - бактерии усиливают процесс выветри­вания . Каменная порода, разрушаясь, измельчаясь все больше и больше, постепенно превращается в почву, на которой затем поселяется различная растительность. Растительные и животные остатки обогащают почву перегноем.

Почва - продукт выветривания гор­ных пород

Рассматривая щепотку почвы , в ней можно увидеть мельчай­шие прозрачные песчинки, камешки, корешки. А если размешать в стакане воды немного почвы, то на дно стакана быстро осядет песок и медленно отложится глина.

Песок и глина - основа почвы. В зависимости от преобла­дания в почве песка или глины она так и называется глинистой, песчаной, суглинистой, супесчаной и т. д.

Почвы - одно из основных природных богатств Земли. В нашей стране плодородные, особенно богатейшие черно­земные почвы занимают огромные пространства.

Умелым вмешательством в жизнь почвы, в протекающие в ней сложнейшие процессы человек повышает плодородие поч­вы. Он не только возрождает истощенные почвы, но даже пре­вращает заведомо бесплодные в плодородные.

В крепостной России неуме­лое хозяйничанье привело к оскудению наиболее хлебородных губерний. Земля перестала плодоносить. Как возродить плодородие почвы, никто не знал, потому что тогда еще не понимали, что такое почва и как она образуется.

Вклад В. В. Докучаева в почвоведение

Строилось много догадок, пока талантли­вый русский ученый профессор В. В. Докучаев (1846-1903) бле­стяще не разрешил поставленную перед сельским хозяйством серьезную задачу. Наука о почве - почвоведение - зародилась в России. Почвоведение - основа мировой науки о почве.

На древних обомшелых стенах Староладожской крепости, заложенной новгородцами в 1116 г., Докучаев разгадал тайну образования почвы из камня.

Строители Староладожской крепости складывали ее стены из «дикого камня» - известняка, находившегося неподалеку в окрестности. Прошло много столетий, и старая крепость, пере­жив славу блестящей победы Александра Невского над швед­скими захватчиками (1240 г.), превратилась в исторический па­мятник, разрушаемый беспощадным временем.

Внимательно исследуя обветшалые стены, Докучаев обнару­жил на поверхности их землистое вещество, в котором прочно укоренилась различная растительность.

Откуда же появилась земля на стенах старой крепости? Не занес ли ее сюда ветер,

Задумался ученый. Нет! Землистое вещество было не только на камнях, но также и между камнями. В нем встречались, кроме того, крупинки и куски того самого камня, из которого были сложены стены крепости. Отдельные куски до того выветрились, что легко крошились в руке.

Что же произошло с камнем? Почему он стал таким податли­вым даже для пальцев? Камень разрушило время .

На протяжении сотен лет камень Староладожской крепости начал переходить в новое образование - почву.


В настоящее время идет реконструкция Староладожской крепости, которая к середине ХХ столетия превратилась практически в руины. Чему причиной стало время и выветривание горных пород.

Выветривание горных пород под воздействием климата (свет, тепло, воздух, вода), растительности, животных, особенно микроорганизмов, (подробнее: ), и человека приводит к образованию почвы.

Почва благоприятствует образованию, и обеспечивает , без которой невозможно существование животного мира. Вознаграждая труд человека, почва еще больше увеличивает значе­ние камня в жизни Земли.

О, выветривание... С ним связана одна из страшных (на самом деле, не очень) ошибок моего детства. Перед поступлением в первый класс я считала, что кукушка "кукукает", а где-то в средней школе не только путала ямб с хореем, но и думала, что выветривание - это только про ветер. Открывать учебник надо было почаще, увы мне.

Выветривание – что это такое

Горы и камни кажутся чем-то вечным, но время не щадит и их. Различные природные процессы постепенно разрушают даже горные породы. Это и есть выветривание.

Здесь важно добавить, что разрушение – это не уничтожение. Минералы не исчезают в никуда, они лишь принимают другую форму. В процессе выветривания образуются кора и продукты выветривания.

Кора выветривания – это рыхлый верхний слой литосферы, сложенный из различных продуктов выветривания, которые также называют элювием или элювиальными отложениями.

Интересные результаты выветривания – кигиляхи (скалы причудливых форм) и курумы (россыпи камней).


Механизмы выветривания

Выделяют два основных типа: химическое и механическое.

Три кита, на которых стоит химическое выветривание:

  • вода;
  • кислород;
  • углекислый газ.

Эти вещества очень активны и легко вступают в реакции. Гидролиз, гидратация, окисление... Одни соединения разрушаются, но образуются другие. Такой вот круговорот элементов в природе.

Вода участвует и в механическом выветривании. Она воздействует на горные породы изнутри (проникая в самые маленькие трещинки) и снаружи (силой волн).


К механическому (физическому) выветриванию относится также воздействие ветра (наконец-то!) и перепадов температур.

Механическое выветривание, в отличие от химического, не изменяет состав вещества. Породы лишь дробятся: от появления маленьких трещин до превращения в пыль.

Особым видом механического выветривания считается то, которое происходит в результате деятельности живых организмов: микроорганизмов, растений и животных.


К выветриванию приводит и воздействие радиации, в том числе, солнечной. Хотя даже внутри самих горных пород встречаются радиоактивные элементы.

Выветривание горных пород – это процесс их разрушения вблизи поверхности в течение длительного периода времени. Выветривание происходит в результате воздействия различных факторов и принято различать три его типа: физическое или механическое, химическое выветривание и биологическое.

Выветривание горных пород физическое

Физическое выветривание – это разрушение горных пород под действием разницы температур. Как оно происходит? Порода трескается, когда её частицы, поочередно охлаждаясь и нагреваясь, теряют прочные связи друг с другом.

В трещины попадает вода и лед и, со временем, они увеличиваются. Водой, а также ветром разрушенный материал уносится из трещины и порода разрушается. Если горная порода слоистая и один слой податливее другого, то, разумеется, в первую очередь разрушается именно он.

Выветривание горных пород химическое

Горные породы также разрушаются в результате их растворения и выщелачивания. Растворяет породу попадающая в её трещины вода, процесс это медленный, но непрерывный. Причем, чем шире и глубже трещина, тем большая поверхность породы подвергается растворению.

Химическому растворению больше всего подвержены карбонатные горные породы – известняки, доломиты, мрамор, гипс, каменная соль

Выветривание горных пород биологическое

Биологическим выветриванием называют разрушение горных пород растениями и мельчайшими живыми организмами – бактериями. Разрушает горные породы не только корневая система крупных растений, но и, например, растущие на поверхности скал лишайники.

Отмирая, частицы растений попадают в воду и делают её более агрессивной химически по отношению к поверхности горной породы. Порода начинает более интенсивно растворяться и разрушаться. Можно сказать, что биологическое выветривание способствует химическому и физическому.

Подверженные выветриванию всех типов верхние слои горных пород называются корой выветривания.

5.В зависимости от происхождения различают минералы первич­ные и вторичные.

К первичным относятся минералы, образовавшиеся впервые в земной коре или на ее поверхности в процессе кристаллизации магмы. К первичным наиболее распространенным минералам относятся кварц, полевой шпат, слюда, из которых состоят гра­нит или сера в кратерах вулканов.

Вторичные минералы образовались при обычных условиях из продуктов разрушения первичных минералов вследствие вывет­ривания, при осаждении и кристаллизации солей из водных рас­творов или в результате жизнедеятельности живых организмов. Это - кухонная соль, гипс, сильвин, бурый железняк и другие.

6.Гранулометрический (механический) состав почв и его значение

Гранулометри́ческий соста́в (механический состав, почвенная текстура) - относительное содержание в почве, горной породе или искусственной смеси частиц различных размеров независимо от их химического или минералогического состава. Гранулометрический состав является важным физическим параметром, от которого зависят многие аспекты существования и функционирования почвы, в том числе плодородие.

Механические элементы – твёрдые частицы, склеенные между собой в почвенные агрегаты. Твёрдая фаза - это всегда смесь частиц разного размера, эти частицы характеризуются химической прочностью связи. Между составными компонентами гранулами или частицами не разрушаются при механическом и химическом воздействии. Все элементы в элементарной почвенной частице находятся в химическом взаимодействии в микро и макро агрегатах. Элементарные почвенные частицы склеиваются органическим веществом и самыми тонкими коллоидами.

Шкала Качинского

Граничные значения, мм Название фракции

до 0,000001 Истинные растворы

0,000001-0,0001 Коллоиды

0,0001-0,0005 Тонкий ил

0,0005-0,001 Грубый ил

0,001-0,005 Мелкая пыль

0,005-0,01 Средняя пыль

0,01-0,05 Крупная пыль

0,05-0,25 Тонкий песок

0,25-0,5 Средний песок

0,5-1 Крупный песок

1-3 Гравий

больше 3 Каменистая часть почвы

Гранулометрический состав определяет многие физические свойства и водно-воздушный режим почв, а также химические, физико-химические и биологические свойства.

Меньший диаметр частиц означает большую удельную поверхность, а это, в свою очередь - большие величины ёмкости катионного обмена, водоудерживающей способности, лучшую агрегированность, но меньшую прочность. Тяжёлые почвы могут иметь проблемы с воздухосодержанием, лёгкие - с водным режимом.

Разные фракции обычно представлены различными минералами. Так, в крупных преобладает кварц, в мелких - каолинит, монтмориллонит. По фракциям различается способность образовывать с гумусом органоминеральные соединения.

7.. Факторы почвообразования (климат, рельеф, почвообразующие породы, растительность и живые организмы, время, деятельность человека), их роль в формировании почв. Климат формируется под влиянием космических факторов и геосферных. Он оказывает многостороннее влияние на биосферу, процессы почвообразования, свойства почв и почвенного покрова. Влияние климата на почвообразование проявляется как непосредственно, обусловливая водно- воздушный, тепловой, биологический, геохимический режимы почв, так и косвенно через другие компоненты биосферы: атмосферу, гидросферу, почвообразующие породы, рельеф, растительный, животный мир и хозяйственную деятельность человека. С климатом связана широтная зональность биосферы и вертикальная поясность в горах. Для характеристики обеспеченности влагой наибольшее распространение получил коэффициент увлажнения Высоцкого-Иванова, он рассчитывается как отношение среднемноголетнего количества осадков к испаряемости. Рельеф – это совокупность форм земной поверхности разных масштабов. Рельеф играет большую роль в процессах функционирования биосферы и в почвообразовании. Мега- и макрорельефы участвуют в формировании воздушных масс и перераспределении тепла и влаги по земной поверхности, определяя климатические и погодные условия, а через них – макроэкосистемы с характерным почвенным покровом. Мезо- и микроформы рельефа перераспределяют тепло и влагу в пределах склонов, повышений и понижений. Они определяют особенности микроклимата и глубину залегания с характерными особенностями почвенного покрова. Определяют размер и форму ЭПА, образующих почвенные комбинации. Профиль любой почвы заканчивается почвообразующей породой. Почвы наследуют от почвообразующей породы гранулометрический состав, минералогический и химический составы, ряд физических свойств. На породах, обогащённых элементами питания и основаниями, как правило, образуются плодородные почвы и, наоборот, на бедных породах формируются почвы с низким плодородием. Почвы, унаследовавшие негативные, с агрономической точки зрения, свойства, такие, как каменистость, высокая плотность, наличие водорастворимых солей и др., требуют специальных затрат на их освоение и улучшение. Почвообразующие породы могут в корне изменять скорость и направление почвообразовательных процессов, что приводит к формированию азональных типов почв, например, дерново-карбонатные почвы в таёжно- лесной зоне среди подзолистых. Глубина залегания грунтовых вод определяется рельефом и степенью водопроницаемости почвообразующих пород. Под воздействием почвенно- грунтовых вод может происходить заболачивание, оглеение, вынос и привнос растворимых продуктов почвообразования, поднятие и опускание солей при колебании уровня грунтовых вод и капиллярной каймы и др. За время существования жизни на Земле живое вещество преобразовало огромное количество солнечной энергии в химическую и механическую работу выветривания. Часть энергии трансформировалась в потенциальную и длительное время в виде громадных запасов орг. и орг.-минер. веществ (нефть, уголь, торф, гумус и др.) сохраняется в земной коре. Живое вещество существенно изменило хим. состав атмосферы, литосферы и гидросферы. Благодаря живому веществу сформировалась почва и главное её свойство – плодородие. В основе почвообразования лежит биологический круговорот веществ, сущность которого заключается в том, что химические элементы литосферы, вода и элементы атмосферы поглощаются живыми организмами, перегруппировываются и возвращаются в почвы, но уже в новом качестве и других количествах. Абсолютный возраст – время, прошедшее с начала формирования почвы до настоящего момента. Относительный возраст характеризует зрелость – степень развития конкретной почвы, соответствие её профиля факторам почвообразования. В процессе почвообразования каждая почва проходит ряд последовательных стадий. На первой стадии начальное почвообразование, сменяется стадией развития (формируется зрелый почв. профиль), при этом достигается стадия квази-равновесия или «климаксное» состояние. В последней стадии долгое время, сменяясь стадией эволюции (сопоставима со стадией развития и ведёт к новому квази-равновесию). 66. В чём сущность почвообразовательного процесса? Почвообразовательный процесс – это совокупность явлений превращения и передвижения веществ и энергии, протекающих в почвенной толще. Совокупность процессов можно разделить на три группы: 1. Процессы обмена веществами и энергией между почвой и другими природными телами (поступление в почву и вынос из неё). 2. Процессы превращения веществ и энергии, происходящие в почвенной толще. 3.Процессы передвижения и аккумуляции веществ и энергии в почвенной толще. Характерная черта – цикличность. Наиболее выражен годичный цикл. Тенденция обратимости и противоположной направленности. Определённая совокупность микропроцессов образует частные (или элементарные) почвообр. процессы. Более 60 естественных ЭПП, объединённых в 7 групп. 1. Биогенно- аккумулятивные ЭПП (подстилкообразование, гумусообразование, торфообразование, детритообразование); 2.Гидрогенно-аккумулятивные ЭПП (засоление, окарбоначивание, оруденение); 3. Метаморфические ЭПП (сиаллизация (оглинение), монтмориллонитизация, ферралитизация- каолинизация-ферсиаллитизация-бокситизация-ферратизация, оглеение, оструктуривание, слитизация); 4. Элювиальные ЭПП (выщелачивание, оподзоливание, лессирование, псевдооподзоливание-псевдооглеение- отбеливание-ферролиз-- элювиально-глеевый процесс-- Al-Fe-гумусовый процесс, осолодение, коркообразование); 5. Иллювиально-аккумулятивные ЭПП (глинисто-иллювиальный-- алюмогумусо-иллювиальный- железистогумусо-иллювиальный-иллювиально-гумусовый-иллювиально- карбонатный); 6. Педотурбационные ЭПП (самомульчирование, криотурбация, пучение, биотурбация, ветровальная педотурбация); 7. Деструктивные ЭПП (эрозия, дефляция (ветровая эрозия), погребение); 8. Агрогенные и техногенные ЭПП (освоение, агрогенное гумусонакопление, мульчирование, окультуривание, агротурбация); 9. Мелиоративные ЭПП (пескование, агрогенное оструктуривание, рекультивация); 10. Деструктивные агро- и техногенные ЭПП (ускоренная эрозия, ирригационная эрозия, дефляция, стаскивание, вторичное засоление, вторичное оглеение. Дегумификация, выпахивание, обесструктуривание, переуплотнение, техногенное загрязнение, агрогенное загрязнение, почвоутомление).

8. Большую роль в питании растений и в превращении внесенных в почву удобрений играет ее поглотительная способность. Под поглотительной способностью понимается способность почвы поглощать различные вещества из раствора, проходящего через нее, и удерживать их. Основы современных представлений о поглотительной способности почвы были заложены работами академика К. К. Гедройца. Он различал пять видов поглощения в почве.

механическую, физическую, физико-химическую, химическую и биологическую. 1. Механическая поглотительная способность – это свойство почвы поглощать твёрдые частицы, поступающие с водой или воздухом, размеры которых превышают размеры почвенных пор. 2. Физическая (молекулярная адсорбция) – это свойство почвы изменять концентрацию молекул различных веществ на поверхности твёрдых частиц за счёт физического взаимодействия молекул. При этом меняется величина поверхности и поверхностная энергия. Происходит положительная физическая адсорбция орг. соединений и отрицательная минер. и некоторых орг. соединений. 3. Химическая (хемосорбция) обусловлена образованием труднорастворимых соединений, выпадающих в осадок из почв. раствора. 4. Биологическая обусловлена поглощением элементов питания и кислорода почвенного воздуха корнями растений и микроорганизмами. Она характеризуется большой избирательностью поглощения. 5. Физико-химическая обусловлена наличием в составе почв ППК, представленного почвенными коллоидами. ППК обладает способностью поглощать и обменивать катионы и анионы, находящиеся на поверхности кол. частиц, на эквивалентное количество ионов почв. раствора. Эта способность обусловливает физико-хим. свойства почв, такие как кислотность, щелочность, буферная способность.

Выветривание - разрушение горных пород под воздействием ряда факторов. Приходя в контакт с атмосферой, гидросферой и биосферой, горные породы, ранее находившиеся на глубине, подвергаются изменению своего состояния, нарушению сплошности и, наконец, дезинтеграции, разрушению на мелкие частицы. Выветривание можно разделить на три вида механическое, химическое и биологическое.

Механическое или морозное выветривание , происходит при замерзании воды попавшей в трещины горных пород. Вода, замерзая, превращается в лед, объем которого на 10% больше, и при этом создается давление на стенки, например, трещины, до 200 МПа, что значительно больше прочности большинства горных пород. Такое же расклинивающее действие на породы оказывают кристаллы соли при их росте из раствора. Механическое расклинивающее воздействие на горные породы оказывают корни деревьев и кустарников, которые, увеличиваясь в объеме, создают большое добавочное напряжение на стенки трещины. Даже мелкие грызуны, а также черви, муравьи и термиты оказывают механическое воздействие на горную породу, роя ходы до 1,5 м глубиной.

Химическим выветриванием называется разрушение горных пород под воздействием воды, кислорода, углекислоты и органических кислот, содержащихся в воздухе и воде и воздействующих на поверхность пород, растворяя их. Химические выветривание представлено несколькими основными процессами: растворением, окислением, гидратацией, восстановлением, карбонатизацией, гидролизом.

Растворение играет наиболее важную роль, т.к. связано с воздействием воды, в которой растворены ионы Na, К, Mg, Са, CI, SO, НСО3 и др. Особенно существенны ионы водорода (Н), гидроксильный ион (ОН) и содержание О, СО и органических кислот. Как известно, концентрации ионов Н оценивают в виде рН-логарифма концентрации ионов. При рН = 6 растворимость железа в 100 тыс. раз (!) больше, чем при рН = 8,5. Глинозем - Al2O3, практически нерастворимый при рН от 5 до 9, при рН < 4 прекрасно растворяется. Кремнезем - SiO2 - значительно увеличивает свою растворимость при пере-ходе от кислых растворов с рН < 7 к щелочным рН > 7. Отсюда ясно, какую важную роль играет водородный ион в ускорении процессов химического выветривания, в частности растворения. Хорошо растворяются соли хлористо-водородной и соляной кислот. Так, на 100 частей воды по весу NaCl приходится 36 частей, RC1 - 32, MgCl - 56, CaCl - 67. Карбонаты и сульфаты растворяются хуже, например на 10 тыс. частей воды всего 20 частей CaSO4, или 25 частей CaSO4 +2H2O. Еще хуже растворяются карбонатные породы, известняки, мергели, доломиты. Однако если растворение продолжается длительное время, то возникает большое разнообразие карстовых форм рельефа, включая глубокие, многокилометровые пещеры

Окисление представляет собой взаимодействие горных пород с кислородом и образование оксидов или гидроксидов, если присутствует вода. Сильнее всего окисляются закисные соединения железа, марганца, никеля, серы, ванадия и других элементов, которые легко соединяются с кислородом.

Легко окисляется такой распространенный минерал, как пирит:

FeS2 + mO2 + nH2O>FeSO4> Fe2 (SO4)3>Fe2O3 nH2O

Таким образом, на «выходе» после окисления получается такой распространенный минерал, как лимонит, или бурый железняк.

Следы окисления в виде пород, окрашенных в бурый, охристый цвет, наблюдаются везде, где в породах содержатся железистые минералы или их включения.

Восстановление происходит в отсутствие химически связанного кислорода, когда сильным восстановителем является органическое вещество, сформировавшееся в результате отмирания болотной растительности. При этом необходимы анаэробные условия в неподвижной, застойной воде, например в болотах. Восстановительные процессы превращают породы с оксидом железа, окрашенные в бурые, желтые и красноватые цвета, в серые и зеленые. Под торфом иногда возникает глинистая серо-зеленая масса, называемая глеем.

Гидролиз - это довольно сложный процесс, особенно затрагивающий минералы из группы силикатов и алюмосиликатов. Происходит он при взаимодействии ионов Н и ОН с ионами минералов, следовательно, для гидролиза всегда необходима вода. Гидролиз приводит к нарушению первичной кристаллической структуры минерала и возникновению новой структуры уже другого минерала. Наиболее распространенный пример - это гидролиз ортоклаза, одного из полевых шпатов, часто встречающегося в горных породах, особенно в гранитах. Гидролиз в присутствии СО приводит к образованию нерастворимого минерала каолинита и выносу бикарбоната калия и кремнезема.

Примеры реакции гидролиза:

2 KАlSi3O8 + 3H2O + 2CO2 > Al2Si2O5 (OH)4 + H4SiO4 +2KHCO3

ортоклаз, каолинит кремнекислота бикарбонат калия

микроклин

СaАl2Si2O8 + 3H2O + 2CO2 > Al2Si2O5 (OH)4 + Са(HCO3)2 + H4SiO4

аноритт каолинит бикарбонат Сa

Карбонатизация . Минералы, содержащие ионы Ca, Mg, Na и K вступают в реакцию с природными водами, насыщенными углекислотой. При этом образуется карбонаты и бикарбонаты этих минералов. Такой процесс называется карбонатизацией. Все поверхностные воды содержат углекислый газ, поступающий из атмосферы или из разлагающегося в почве органического вещества. Растворенный углекислый газ реагирует с водой, при этом образуется углекислота:

Н 2 О + СО2 = Н2 СО3

Углекислота диссоциирует на ионы водорода (Н +) и бикарбоната (НСО3 -) и ионы карбоната (СО3 2-). Поэтому насыщенная углекислой вода растворяет многие минералы легче, чем чистая вода, т.е. является активным агентом выветривания.

Гидратация - это процесс присоединения воды к минералам и образования новых минералов. Самый простой пример - переход ангидрита в гипс.

CaSO4 + 2H2O>CaSO4 2H2O

Объем породы при гидратации увеличивается, что может привести к деформациям отложений.

Биологическое выветривание. Горные породы на своих поверхностях содержат огромное количество микроорганизмов. На 1 г выветрелой породы может приходиться до 1 млн. бактерий. Как только порода начинает выветриваться, на ней сразу же поселяются бактерии и сине-зеленые водоросли, затем лишайники и мхи, которые растворяют и разрушают поверхностный слой породы, и после их отмирания на ней образуются углубления, ямки, борозды, заполненные сухой биомассой отмерших организмов. Наиболее распространены грибные гифы (ветвящиеся тяжи) и микроколонии из округлых клеток. Грибы, как правило, интенсивно окрашены различными пигментами - меланином, каротиноидами, микроспоринами, которые вызывают потемнение трещин и придают поверхности мрамора, например, красновато-бурый, бурый - почти черный - цвет. Еле заметные трещинки на поверхности камней обладают другими экологическими обстановками, нежели обстановки на гладкой поверхности породы. Там больше влаги и меньше света. Поэтому в субаэральных пленках на поверхности камней преобладают микроскопические грибы, гифы которых активно растут, удлиняются и в конце концов покрывают всю поверхность камня. Таким образом, на поверхности горных пород формируются сообщества микроорганизмов, играющие важную роль в процессах выветривания.

Чаще всего перечисленные выше типы выветривания действуют одновременно. Однако под воздействием климата, водного режима, смены суточной и сезонной температур решающим становится какой-нибудь один тип, подчиняющийся климатической зональности. Так, во влажной тропической зоне химическое выветривание благодаря высокой температуре протекает интенсивно, с максимумом выщелачивания. Несколько менее энергично такое же выветривание происходит в таежно-подзолистой зоне. В пустынях, полупустынях и тундре преобладает физическое выветривание, тогда как химическое сходит на нет.