Какую информацию можно получить из ряда напряжений?

Ряд напряжений металлов широко используется в неорганической химии. В частности, результаты многих реакций и даже возможность их осуществления зависят от положения некоторого металла в ЭРН. Обсудим этот вопрос подробнее.

Взаимодействие металлов с кислотами

Металлы, находящиеся в ряду напряжений левее водорода, реагируют с кислотами - неокислителями. Металлы, расположенные в ЭРН правее Н, взаимодействуют только с кислотами - окислителями (в частности, с HNO 3 и концентрированной H 2 SO 4).

Пример 1 . Цинк расположен в ЭРН левее водорода, следовательно, способен реагировать практически со всеми кислотами:

Zn + 2HCl = ZnCl 2 + H 2

Zn + H 2 SO 4 = ZnSO 4 + H 2

Пример 2 . Медь находится в ЭРН правее Н; данный металл не реагирует с "обычными" кислотами (HCl, H 3 PO 4 , HBr, органические кислоты), однако вступает во взаимодействие с кислотами-окислителями (азотная, концентрированная серная):

Cu + 4HNO 3 (конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

Cu + 2H 2 SO 4 (конц.) = CuSO 4 + SO 2 + 2H 2 O

Обращаю внимание на важный момент: при взаимодействии металлов с кислотами-окислителями выделяется не водород, а некоторые другие соединения. Подробнее об этом можно почитать !

Взаимодействие металлов с водой

Металлы, расположенные в ряду напряжений левее Mg, легко реагируют с водой уже при комнатной температуре с выделением водорода и образованием раствора щелочи.

Пример 3 . Натрий, калий, кальций легко растворяются в воде с образованием раствора щелочи:

2Na + 2H 2 O = 2NaOH + H 2

2K + 2H 2 O = 2KOH + H 2

Ca + 2H 2 O = Ca(OH) 2 + H 2

Металлы, расположенные в ряду напряжений от водорода до магния (включительно), в ряде случаев взаимодействуют с водой, но реакции требуют специфических условий. Например, алюминий и магний начинают взаимодействие с Н 2 О только после удаления оксидной пленки с поверхности металла. Железо не реагирует с водой при комнатной температуре, но взаимодействует с парами воды. Кобальт, никель, олово, свинец практически не взаимодействуют с H 2 O не только при комнатной температуре, но и при нагревании.

Металлы, расположенные в правой части ЭРН (серебро, золото, платина) не реагируют с водой ни при каких условиях.

Взаимодействие металлов с водными растворами солей

Речь пойдет о реакциях следующего типа:

металл (*) + соль металла (**) = металл (**) + соль металла (*)

Хотелось бы подчеркнуть, что звездочки обозначают в данном случае не степень окисления, не валентность металла, а просто позволяют различить металл № 1 и металл № 2.

Для осуществления подобной реакции необходимо одновременное выполнение трех условий:

  1. соли, участвующие в процессе, должны растворяться в воде (это легко проверить, пользуясь таблицей растворимости);
  2. металл (*) должен находиться в ряду напряжений левее металла (**);
  3. металл (*) не должен реагировать с водой (что тоже легко проверяется по ЭРН).

Пример 4 . Рассмотрим несколько реакций:

Zn + CuSO 4 = ZnSO 4 + Cu

K + Ni(NO 3) 2 ≠

Первая реакция легко осуществима, все перечисленные выше условия выполнены: сульфат меди растворим в воде, цинк находится в ЭРН левее меди, Zn не реагирует с водой.

Вторая реакция невозможна, т. к. не выполнено первое условие (сульфид меди (II) практически не растворяется в воде). Третья реакция неосуществима, поскольку свинец - менее активный металл, нежели железо (находится правее в ЭРН). Наконец, четвертый процесс НЕ приведет к осаждению никеля, поскольку калий реагирует с водой; образовавшийся гидроксид калия может вступить в реакцию с раствором соли, но это уже совершенно другой процесс.

Процесс термического распада нитратов

Напомню, что нитраты - это соли азотной кислоты. Все нитраты разлагаются при нагревании, но вот состав продуктов разложения может быть разным. Состав определяется положением металла в ряду напряжений.

Нитраты металлов, расположенных в ЭРН левее магния, при нагревании образуют соответствующий нитрит и кислород:

2KNO 3 = 2KNO 2 + O 2

В ходе термического разложения нитратов металлов, расположенных в ряду напряжений от Mg до Cu включительно, образуются оксид металла, NO 2 и кислород:

2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

Наконец, при разложении нитратов наименее активных металлов (расположенных в ЭРН правее меди) образуются металл, диоксид азота и кислород.

Электрохимические системы

Общая характеристика

Электрохимия - раздел химии, которая изучает процессы возникновения разности потенциалов и превращение химической энергии в электрическую (гальванические элементы), а также осуществление химических реакций за счет затраты электрической энергии (электролиз). Эти два процесса, имеющие общую природу нашли широкое применение в современной технике.

Гальванические элементы используются как автономные и малогабаритные источники энергии для машин, радиотехнических устройств и приборов управления. При помощи электролиза получают различные вещества, обрабатывают поверхности, создают изделия нужной формы.

Электрохимические процессы не всегда служат на пользу человеку, а иногда приносят большой вред, вызывая усиленную коррозию и разрушение металлических конструкций. Чтобы умело использовать электрохимические процессы и бороться с нежелательными явлениями, их надо изучить и уметь регулировать.

Причиной возникновения электрохимических явлений служит переход электронов или изменение степени окисления атомов веществ, участвующих в электрохимических процессах, то есть окислительно-восстановительные реакции, протекающие в гетерогенных системах. В окислительно-восстановительных реакциях электроны непосредственно переходят от восстановителя к окислителю. Если процессы окисления и восстановления пространственно разделить, а электроны направить по металлическому проводнику, то такая система будет представлять собой гальванический элемент. Причиной возникновения и протекания электрического тока в гальваническом элементе является разность потенциалов.

Электродный потенциал. Измерение электродных потенциалов

Если взять пластину какого либо металла и опустить ее в воду, то ионы поверхностного слоя под действием полярных молекул воды отрываются и гидратированными переходят в жидкость. В результате такого перехода жидкость заряжается положительно, а металл отрицательно, поскольку на нем появляется избыток электронов. Накопление ионов металла в жидкости начинает тормозить растворение металла. Устанавливается подвижное равновесие

Ме 0 + mН 2 О = Ме n + × m H 2 O + ne -

Состояние равновесия зависит как от активности металла так и от концентрации его ионов в растворе. В случае активных металлов, стоящих в ряду напряжений до водорода, взаимодействие с полярными молекулами воды заканчивается отрывом от поверхности положительных ионов металла и переходом гидратировнных ионов в раствор (рис. б). Металл заряжается отрицательно. Процесс является окислением. По мере увеличения концентрации ионов у поверхности становится вероятным обратный процесс - восстановление ионов. Электростатическое притяжение между катионами в растворе и избыточными электронами на поверхности образует двойной электрический слой. Это приводит к возникновению на границе соприкосновения металла и жидкости определенной разности потенциалов, или скачка потенциала. Разность потенциалов, возникающую между металлом и окружающей его водной средой, называют электродным потенциалом. При погружении металла в раствор соли этого металла равновесие смещается. Повышение концентрации ионов данного металла в растворе облегчает процесс перехода ионов из раствора в металл. Металлы, ионы которых обладают значительной способностью к переходу в раствор, будут заряжаться и в таком растворе положительно, но в меньшей степени, чем в чистой воде.

Для неактивных металлов равновесная концентрация ионов металла в растворе очень мала. Если такой металл погрузить в раствор соли этого металла, то положительно заряженные ионы выделяются на металле с большей скоростью, чем происходит переход ионов из металла в раствор. Поверхность металла получит положительный заряд, а раствор отрицательный из-за избытка анионов соли. И в этом случае на границе металл - раствор возникает двойной электрический слой, следовательно, определенная разность потенциалов (рис. в). В рассмотренном случае электродный потенциал положительный.

Рис. Процесс перехода иона из металла в раствор:

а – равновесие; б – растворение; в – осаждение

Потенциал каждого электрода зависит от природы металла, концентрации его ионов в растворе и температуры. Если металл опустить в раствор его соли, содержащей один моль-ион металла на 1 дм 3 (активность которого равна 1), то электродный потенциал будет постоянной величиной при температуре 25 о С и давлении 1 атм. Такой потенциал называется стандартным электродным потенциалом (Е о).

Ионы металла, имеющие положительный заряд, проникая в раствор и перемещаясь в поле потенциала границы раздела металл-раствор, затрачивают энергию. Эта энергия компенсируется работой изотермического расширения от большей концентрации ионов на поверхности к меньшей в растворе. Положительные ионы накапливаются в приповерхностном слое до концентрации с о , а затем уходят в раствор, где концентрация свободных ионов с . Работа электрического поля ЕnF равна изотермической работе расширения RTln(с o /с). Приравняв оба выражения работы можно вывести величину потенциала

Еn F = RTln(с o /с), -Е = RTln(с/с о)/nF,

где Е – потенциал металла, В; R – универсальная газовая постоянная, Дж/моль К; Т – температура, K; n – заряд иона; F – число Фарадея; с – концентрация свободных ионов;

с о – концентрация ионов в поверхностном слое.

Непосредственно измерить величину потенциала не представляется возможным, так как невозможно экспериментально определить с о. Опытным путем определяют величины электродных потенциалов относительно величины другого электрода, потенциал которого условно принимают равным нулю. Таким стандартным электродом или электродом сравнения является нормальный водородный электрод (н.в.э.) . Устройство водородного электрода показано на рисунке. Он состоит из платиновой пластинки, покрытой электролитически осаждённой платиной. Электрод погружен в 1М раствор серной кислоты (активность ионов водорода равна 1 моль/дм 3) и омывается струей газообразного водорода под давлением 101 кПа и Т = 298 К. При насыщении платины водородом на поверхности металла устанавливается равновесие, суммарный процесс выражается уравнением

2Н + +2е ↔ Н 2 .

Если пластинку металла, погруженного в 1М раствор соли этого металла, соединить внешним проводником со стандартным водородным электродом, а растворы электролитическим ключом, то получим гальванический элемент (рис. 32). Электродвижущая сила этого гальванического элемента будет являться величиной стандартного электродного потенциала данного металла (Е о ).

Схема измерения стандартного электродного потенциала

относительно водородного электрода

Взяв в качестве электрода цинк находящийся в 1 М растворе сульфата цинка и соединив его с водородным электродом, получим гальванический элемент, схему которого запишем следующим образом

(-) Zn/Zn 2+ // 2H + /H 2 , Pt (+).

В схеме одна черта означает границу раздела между электродом и раствором, две черты – границу между растворами. Анод записывается слева, катод справа. В таком элементе осуществляется реакция Zn о + 2H + = Zn 2+ + Н 2 , а электроны по внешней цепи переходят от цинкового к водородному электроду. Стандартный электродный потенциал цинкового электрода (-0,76 В).

Взяв в качестве электрода медную пластинку, при указанных условиях в сочетании со стандартным водородным электродом, получим гальванический элемент

(-) Pt, H 2 /2H + //Cu 2+ /Cu (+).

В этом случае протекает реакция: Cu 2+ + H 2 = Cu о + 2H + . Электроны по внешней цепи перемещаются от водородного электрода к медному электроду. Стандартный электродный потенциал медного электрода (+0,34 В).

Ряд стандартных электродных потенциалов (напряжений). Уравнение Нернста

Располагая металлы в порядке возрастания их стандартных электродных потенциалов, получают ряд напряжений Николая Николаевича Бекетова (1827-1911), или ряд стандартных электродных потенциалов. Числовые значения стандартных электродных потенциалов для ряда технически важных металлов приведены в таблице.

Ряд напряжений металлов

Ряд напряжений характеризует некоторые свойства металлов:

1. Чем меньшее значение имеет электродный потенциал металла, тем он химически активнее, легче окисляется и труднее восстанавливается из своих ионов. Активные металлы в природе существуют только в виде соединений Na, K, ..., встречаются в природе, как в виде соединений, так и в свободном состоянии Cu, Ag, Hg; Au, Pt - только в свободном состоянии;

2. Металлы, имеющие более отрицательный электродный потенциал, чем магний, вытесняют водород из воды;

3. Металлы, стоящие в ряду напряжений до водорода, вытесняют водород из растворов разбавленных кислот (анионы которых не проявляют окислительных свойств);

4. Каждый металл ряда, не разлагающий воду, вытесняет металлы, имеющие более положительные значения электродных потенциалов из растворов их солей;

5. Чем больше отличаются металлы значениями электродных потенциалов, тем большее значение э.д.с. будет иметь построенный из них гальванический элемент.

Зависимость величины электродного потенциала (Е) от природы металла, активности его ионов в растворе и температуры выражается уравнением Нернста

Е Ме = Е о Ме + RTln(a Ме n +)/nF,

где Е о Ме – стандартный электродный потенциал металла, a Me n + – активность ионов металла в растворе. При стандартной температуре 25 о С, для разбавленных растворов заменяя активность (а) концентрацией (с), натуральный логарифм десятичным и подставляя значения R , T и F, получим

Е Ме = Е о Ме + (0,059/n)lgс.

Например, для цинкового электрода, помещенного в раствор своей соли, концентрацию гидратированных ионов Zn 2+ × mH 2 O сокращенно обозначим Zn 2+ , тогда

Е Zn = Е о Zn + (0,059/n) lg[ Zn 2+ ].

Если = 1 моль/дм 3 , то Е Zn = Е о Zn .

Гальванические элементы, их электродвижущая сила

Два металла, погруженные в растворы своих солей, соединенные проводником, образуют гальванический элемент. Первый гальванический элемент был изобретен Александром Вольтом в 1800 г. Элемент состоял из медных и цинковых пластинок, разделенных сукном, смоченным раствором серной кислоты. При последовательном соединении большого числа пластинок элемент Вольта обладает значительной электродвижущей силой (э.д.с.).

Возникновение электрического тока в гальваническом элементе обусловлено разностью электродных потенциалов взятых металлов и сопровождается химическими превращениями, протекающими на электродах. Рассмотрим работу гальванического элемента на примере медно-цинкового элемента (Дж. Даниэля – Б.С. Якоби).

Схема медно-цинкового гальванического элемента Даниэля-Якоби

На цинковом электроде, опущенном в раствор сульфата цинка (с = 1 моль/дм 3), происходит окисление цинка (растворение цинка) Zn о - 2e = Zn 2+ . Электроны поступают во внешнюю цепь. Zn – источник электронов. Источник электронов принято считать отрицательным электродом – анодом. На электроде из меди, погруженном в раствор сульфата меди (с = 1 моль/дм 3) происходит восстановление ионов металла. Атомы меди осаждаются на электроде Cu 2+ + 2e = Cu о. Медный электрод положительный. Он является катодом. Одновременно часть ионов SO 4 2- переходят через солевой мостик в сосуд с раствором ZnSO 4 . Сложив уравнения процессов, протекающих на аноде и катоде, получим суммарное уравнение

Борис Семенович Якоби (Мориц Герман)(1801-1874)

или в молекулярной форме

Это обычная окислительно - восстановительная реакция, протекающая на границе металл-раствор. Электрическая энергия гальванического элемента получается за счёт химической реакции. Рассмотренный гальванический элемент можно записать в виде краткой электрохимической схемы

(-) Zn/Zn 2+ //Cu 2+ /Cu (+).

Необходимым условием работы гальванического элемента является разность потенциалов, она называется электродвижущей силой гальванического элемента (э.д.с.) . Э.д.с. всякого работающего гальванического элемента величина положительная. Для вычисления э.д.с. гальванического элемента надо из величины более положительного потенциала отнять величину менее положительного потенциала. Так э.д.с. медно–цинкового гальванического элемента при стандартных условиях (t = 25 о С, с = 1 моль/дм 3 , Р = 1 атм) равна разности между стандартными электродными потенциалами меди (катода) и цинка (анода), то есть

э.д.с. = Е о С u 2+ / Cu - Е o Zn 2+ / Zn = +0,34 В – (-0,76 В) = +1,10 В.

В паре с цинком ион Cu 2+ восстанавливается.

Необходимую для работы разность электродных потенциалов можно создать, используя один и тот же раствор разной концентрации и одинаковые электроды. Такой гальванический элемент называется концентрационным , а работает он за счет выравнивания концентраций раствора. Примером может служить элемент, составленный из двух водородных электродов

Pt, H 2 / H 2 SO 4 (с`) // H 2 SO 4 (с``) /H 2, Pt,

где с` = `; с`` = ``.

Если р = 101 кПа, с` < с``, то его э.д.с. при 25 о С определяется уравнением

Е = 0,059lg(с``/с`).

При с` = 1 моль-ион/дм 3 э.д.с. элемента определяется концентрацией водородных ионов во втором растворе, то есть Е = 0,059lgс`` = -0,059 pH.

Определение концентрации ионов водорода и, следовательно, рН среды измерением э.д.с. соответствующего гальванического элемента называется потенциометрией.

Аккумуляторы

Аккумуляторами называются гальванические элементы многоразового и обратимого действия. Они способны превращать накопленную химическую энергию в электрическую при разрядке, а электрическую в химическую, создавая запас ее в процессе зарядки. Так как э.д.с. аккумуляторов невелика, при эксплуатации их обычно соединяют в батареи.

Свинцовый аккумулятор . Свинцовый аккумулятор состоит из двух перфорированных свинцовых пластин, одна из которых (отрицательная) после зарядки содержит наполнитель - губчатый активный свинец, а другая (положительная) - диоксид свинца. Обе пластины погружены в 25 - 30 % раствор серной кислоты (рис. 35). Схема аккумулятора

(-) Pb/ p -p H 2 SO 4 / PbO 2 /Pb(+).

Перед зарядкой в поры свинцовых электродов вмазывается паста, содержащая помимо органического связующего оксид свинца PbO. В результате взаимодействия оксида свинца с серной кислотой в порах электродных пластин образуется сульфат свинца

PbО + H 2 SO 4 = PbSO 4 + H 2 O.

Аккумуляторы заряжают, пропуская электрический ток

Процесс разрядки

Суммарно процессы, происходящие при зарядке и разрядке аккумулятора, можно представить следующим образом

При зарядке аккумулятора плотность электролита (серной кислоты) увеличивается, а при разрядке уменьшается. По плотности электролита судят о степени разряженности аккумулятора. Э.д.с. свинцового аккумулятора 2,1 В.

Преимущества свинцового аккумулятора - большая электрическая емкость, устойчивость в работе, большое количество циклов (разрядка- зарядка). Недостатки - большая масса и, следовательно, малая удельная ёмкость, выделение водорода при зарядке, не герметичность при наличии концентрированного раствора серной кислоты. В этом отношении лучше щелочные аккумуляторы.

Щелочные аккумуляторы. К ним относятся кадмиево-никеливые и железо-никелиевые аккумуляторы Т. Эдисона.

Схемы аккумулятора Эдисона и свинцового аккумулятора

Томас Эдисон(1847-1931)

Они сходны между собой. Различие состоит в материале пластин отрицательного электрода. В первом случае они кадмиевые, во втором железные. Электролитом служит раствор КОН ω = 20 %. Наибольшее практическое значение имеют кадмиево-никелевые аккумуляторы. Схема кадмиево-никелевого аккумулятора

(-) Cd / раствор KOH /Ni 2 O 3 /Ni (+).

Работа кадмиевого-никелевого аккумулятора основана на окислительно-восстановительной реакции с участием Ni 3+

Э.д.с. заряженного кадмиево-никелевого аккумулятора составляет 1.4 В.

В таблице представлены характеристики аккумулятора Эдисона и свинцового аккумулятора.

В электрохимической ячейке (гальваническом элементе) электроны, остающиеся после образования ионов, удаляются через металлический провод и рекомбинируют с ионами другого вида. Т.е.заряд во внешней цепи переносится электронами, а внутри ячейки, через электролит, в который погружены металлические электроды, ионами. Таким образом получается замкнутая электрическая цепь.

Разность потенциалов, измеряемая в электрохимической ячейке, o бъясняется различием в способности каждого из металлов отдавать электроны. Каждый электрод имеет собственный потенциал, каждая система электрод-электролит представляет собой полуэлемент, а любые два полуэлемента образуют электрохимическую ячейку. Потенциал одного электрода называют потенциалом полуэлемента, он определят способность электрода отдавать электроны. Очевидно, что потенциал каждого полуэлемента не зависит от наличия другого полуэлемента и его потенциала. Потенциал полуэлемента определяется концентрацией ионов в электролите и температурой.

В качестве «нулевого» полуэлемента был выбран водород, т.е. считается, что для него при добавлении или удалении электрона с образованием иона никакой работы не совершается. «Нулевое» значение потенциала необходимо для понимания относительной способности каждого из двух полуэлементов ячейки отдавать и принимать электроны.

Потенциалы полуэлементов, измеряемые относительно водородного электрода, называются водородной шкалой. Если термодинамическая склонность отдавать электроны в одной половине электрохимической ячейки выше, чем в другой, то потенциал первою полуэлемента выше, чем потенциал второго. Под действием разности потенциалов будет происходить переток электронов. При сочетании двух металлов можно выяснить возникающую между ними разность потенциалов и направление потока электронов.

Электроположительный металл обладает более высокой способностью принимать электроны, поэтому он будет катодным или благородным. С другой стороны находятся электроотрицательные металлы, которые способны самопроизвольно отдавать электроны. Эти металлы являются реакционноспособными, а, следовательно, анодными:

- 0 +

Al Mn Zn Fe Sn Pb H 2 Cu Ag Au


Например, Cu отдает электроны легче Ag , но хуже Fe . В присутствии медного электрода ноны серебра начнут соединяться с электронами, приводя к образованию ионов меди и осаждению металлического серебра:

2 Ag + + Cu Cu 2+ + 2 Ag

Однако та же самая медь менее реакционноспособна, чем железо. При контакте металлического железа с нонами меди та будет осаждаться, а железо переходить в раствор:

Fe + Cu 2+ Fe 2+ + Cu .

Можно говорить, что медь является катодным металлом относительно железа и анодным - относительно серебра.

Стандартным электродным потенциалом считается потенциал полуэлемента из полностью отожженого чистого металла в качестве электрода в контакте с ионами при 25 0 С. В этих измерениях водородный электрод выступает в роли электрода сравнения. В случае двухвалентного металла можно записать реакцию, протекающую в соответствующей электро-химической ячейке:

М + 2Н + М 2+ + Н 2 .

Если упорядочить металлы по убыванию их стандартных электродных потенциалов, то получается так называемый электрохимический ряд напряжений металлов (табл. 1).

Таблица 1. Электрохимический ряд напряжений металлов

Равновесие металл-ионы (единичной активности)

Электродный потенциал относительно водородного электрода при 25°С, В (восстановительный потенциал)

Благородные

или катодные

Au-Au 3+

1,498

Pt-Pt 2 +

Pd-Pd 2 +

0,987

Ag-Ag +

0,799

Hg-Hg 2+

0,788

Cu-Cu 2+

0,337

Н 2 -Н +

Pb-Pb 2 +

0,126

Sn-Sn 2+

0,140

Ni-Ni 2+

0,236

Co-Co 2+

0,250

Cd-Cd 2+

0,403

Fe-Fe 2+

0,444

Cr-Cr 2+

0,744

Zn-Zn 2+

0,763

Активные
или анодные

Al-Al 2 +

1,662

Mg-Mg 2 +

2,363

Na-Na +

2,714

K-K +

2,925

Например, в гальваническом элементе медь-цинк возникает поток электронов от цинка к меди. Медный электрод является в этой схеме положительным полюсом, а цинковый - отрицательным. Более реакционноспособный цинк теряет электроны:

Zn Zn 2+ + 2е - ; E °=+0,763 В.

Медь же является менее реакционноспособной и принимает электроны от цинка:

Cu 2+ + 2е - Cu ; E °=+0,337 В.

Напряжение на соединяющем электроды металлическом проводе составит:

0,763 В + 0,337 В = 1,1 В.

Таблица 2. Стационарные потенциалы некоторых металлов и сплавов в морской воде по отношению к нормальному водородному электроду ( ГОСТ 9.005-72).

Металл

Стационарный потенциал, В

Металл

Стационарный потенциал, В

Магний

1,45

Никель (активное co стояние)

0,12

Магниевый сплав (6 % А l , 3 % Zn , 0,5 % Mn )

1,20

Медные сплавы ЛМцЖ-55 3-1

0,12

Цинк

0,80

Латунь (30 % Zn )

0,11

Алюминиевый сплав (10 % Mn )

0,74

Бронза (5-10 % Al )

0,10

Алюминиевый сплав (10 % Zn )

0,70

Томпак (5-10 % Zn )

0,08

Алюминиевый сплав К48-1

0,660

Медь

0,08

Алюминиевый сплав В48-4

0,650

Купроникель (30 % Ni )

0,02

Алюминиевый сплав АМг5

0,550

Бронза «Нева»

0,01

Алюминиевый сплав АМг61

0,540

Бронза Бр. АЖН 9-4-4

0,02

Алюминий

0,53

Нержавеющая сталь Х13 (пассивное состояние)

0,03

Кадмий

0,52

Никель (пассивное состояние)

0,05

Дюралюминий и алюминиевый сплав АМг6

0,50

Нержавеющая сталь Х17 (пассивное состояние)

0,10

Железо

0,50

Титан технический

0,10

Сталь 45Г17Ю3

0,47

Серебро

0,12

Сталь Ст4С

0,46

Нержавеющая сталь 1Х14НД

0,12

Сталь СХЛ4

0,45

Титан йодистый

0,15

Сталь типа АК и углеродистая сталь

0,40

Нержавеющая сталь Х18Н9 (пассивное состояние) и ОХ17Н7Ю

0,17

Серый чугун

0,36

Монель-металл

0,17

Нержавеющие стали Х13 и Х17 (активное состояние)

0,32

Нержавеющая сталь Х18Н12М3 (пассивное состояние)

0,20

Никельмедистый чугун (12-15 % Ni , 5-7 % Си)

0,30

Нержавеющая сталь Х18Н10Т

0,25

Свинец

0,30

Платина

0,40

Олово

0,25

Примечание . Указанные числовые значения потенциалов н порядок металлов в ряду могут изменяться в различной степени в зависимости от чистоты металлов, состава морской воды, степени аэрации и состояния поверхности металлов.

Электрохимия - раздел химии, которая изучает процессы возникновения разности потенциалов и превращение химической энергии в электрическую (гальванические элементы), а также осуществление химических реакций за счет затраты электрической энергии (электролиз). Эти два процесса, имеющие общую природу нашли широкое применение в современной технике.

Гальванические элементы используются как автономные и малогабаритные источники энергии для машин, радиотехнических устройств и приборов управления. При помощи электролиза получают различные вещества, обрабатывают поверхности, создают изделия нужной формы.

Электрохимические процессы не всегда служат на пользу человеку, а иногда приносят большой вред, вызывая усиленную коррозию и разрушение металлических конструкций. Чтобы умело использовать электрохимические процессы и бороться с нежелательными явлениями, их надо изучить и уметь регулировать.

Причиной возникновения электрохимических явлений служит переход электронов или изменение степени окисления атомов веществ, участвующих в электрохимических процессах, то есть окислительно-восстановительные реакции, протекающие в гетерогенных системах. В окислительно-восстановительных реакциях электроны непосредственно переходят от восстановителя к окислителю. Если процессы окисления и восстановления пространственно разделить, а электроны направить по металлическому проводнику, то такая система будет представлять собой гальванический элемент. Причиной возникновения и протекания электрического тока в гальваническом элементе является разность потенциалов.

Электродный потенциал. Измерение электродных потенциалов

Если взять пластину какого либо металла и опустить ее в воду, то ионы поверхностного слоя под действием полярных молекул воды отрываются и гидратированными переходят в жидкость. В результате такого перехода жидкость заряжается положительно, а металл отрицательно, поскольку на нем появляется избыток электронов. Накопление ионов металла в жидкости начинает тормозить растворение металла. Устанавливается подвижное равновесие

Ме 0 + mН 2 О = Ме n + × m H 2 O + ne -

Состояние равновесия зависит как от активности металла так и от концентрации его ионов в растворе. В случае активных металлов, стоящих в ряду напряжений до водорода, взаимодействие с полярными молекулами воды заканчивается отрывом от поверхности положительных ионов металла и переходом гидратировнных ионов в раствор (рис. б). Металл заряжается отрицательно. Процесс является окислением. По мере увеличения концентрации ионов у поверхности становится вероятным обратный процесс - восстановление ионов. Электростатическое притяжение между катионами в растворе и избыточными электронами на поверхности образует двойной электрический слой. Это приводит к возникновению на границе соприкосновения металла и жидкости определенной разности потенциалов, или скачка потенциала. Разность потенциалов, возникающую между металлом и окружающей его водной средой, называют электродным потенциалом. При погружении металла в раствор соли этого металла равновесие смещается. Повышение концентрации ионов данного металла в растворе облегчает процесс перехода ионов из раствора в металл. Металлы, ионы которых обладают значительной способностью к переходу в раствор, будут заряжаться и в таком растворе положительно, но в меньшей степени, чем в чистой воде.

Для неактивных металлов равновесная концентрация ионов металла в растворе очень мала. Если такой металл погрузить в раствор соли этого металла, то положительно заряженные ионы выделяются на металле с большей скоростью, чем происходит переход ионов из металла в раствор. Поверхность металла получит положительный заряд, а раствор отрицательный из-за избытка анионов соли. И в этом случае на границе металл - раствор возникает двойной электрический слой, следовательно, определенная разность потенциалов (рис. в). В рассмотренном случае электродный потенциал положительный.

Рис. Процесс перехода иона из металла в раствор:

а – равновесие; б – растворение; в – осаждение

Потенциал каждого электрода зависит от природы металла, концентрации его ионов в растворе и температуры. Если металл опустить в раствор его соли, содержащей один моль-ион металла на 1 дм 3 (активность которого равна 1), то электродный потенциал будет постоянной величиной при температуре 25 о С и давлении 1 атм. Такой потенциал называется стандартным электродным потенциалом (Е о).

Ионы металла, имеющие положительный заряд, проникая в раствор и перемещаясь в поле потенциала границы раздела металл-раствор, затрачивают энергию. Эта энергия компенсируется работой изотермического расширения от большей концентрации ионов на поверхности к меньшей в растворе. Положительные ионы накапливаются в приповерхностном слое до концентрации с о , а затем уходят в раствор, где концентрация свободных ионов с . Работа электрического поля ЕnF равна изотермической работе расширения RTln(с o /с). Приравняв оба выражения работы можно вывести величину потенциала

Еn F = RTln(с o /с), -Е = RTln(с/с о)/nF,

где Е – потенциал металла, В; R – универсальная газовая постоянная, Дж/моль К; Т – температура, K; n – заряд иона; F – число Фарадея; с – концентрация свободных ионов;

с о – концентрация ионов в поверхностном слое.

Непосредственно измерить величину потенциала не представляется возможным, так как невозможно экспериментально определить с о. Опытным путем определяют величины электродных потенциалов относительно величины другого электрода, потенциал которого условно принимают равным нулю. Таким стандартным электродом или электродом сравнения является нормальный водородный электрод (н.в.э.) . Устройство водородного электрода показано на рисунке. Он состоит из платиновой пластинки, покрытой электролитически осаждённой платиной. Электрод погружен в 1М раствор серной кислоты (активность ионов водорода равна 1 моль/дм 3) и омывается струей газообразного водорода под давлением 101 кПа и Т = 298 К. При насыщении платины водородом на поверхности металла устанавливается равновесие, суммарный процесс выражается уравнением

2Н + +2е ↔ Н 2 .

Если пластинку металла, погруженного в 1М раствор соли этого металла, соединить внешним проводником со стандартным водородным электродом, а растворы электролитическим ключом, то получим гальванический элемент (рис. 32). Электродвижущая сила этого гальванического элемента будет являться величиной стандартного электродного потенциала данного металла (Е о ).

Схема измерения стандартного электродного потенциала

относительно водородного электрода

Взяв в качестве электрода цинк находящийся в 1 М растворе сульфата цинка и соединив его с водородным электродом, получим гальванический элемент, схему которого запишем следующим образом

(-) Zn/Zn 2+ // 2H + /H 2 , Pt (+).

В схеме одна черта означает границу раздела между электродом и раствором, две черты – границу между растворами. Анод записывается слева, катод справа. В таком элементе осуществляется реакция Zn о + 2H + = Zn 2+ + Н 2 , а электроны по внешней цепи переходят от цинкового к водородному электроду. Стандартный электродный потенциал цинкового электрода (-0,76 В).

Взяв в качестве электрода медную пластинку, при указанных условиях в сочетании со стандартным водородным электродом, получим гальванический элемент

(-) Pt, H 2 /2H + //Cu 2+ /Cu (+).

В этом случае протекает реакция: Cu 2+ + H 2 = Cu о + 2H + . Электроны по внешней цепи перемещаются от водородного электрода к медному электроду. Стандартный электродный потенциал медного электрода (+0,34 В).

Все электрохимические процессы можно разделить на две противоположные группы: процессы электролиза, при которых под действием внешнего источника электроэнергии происходят химические реакции, и процессы возникновения электродвижущей силы и электрического тока вследствие определенных химических реакций.

В первой группе процессов электрическая энергия превращается в химическую, во второй ‒ наоборот, химическая ‒ в электрическую.

Примерами процессов обоих типов могут быть процессы, происходящие в аккумуляторах. Так, при работе свинцового аккумулятора генератора электрической энергии происходит реакция:

Рb + РbO 2 + 4Н + + 2SO 4 2- → РbSO 4 + 2Н 2 O.

Вследствие этой реакции освобождается энергия, которая и превращается в электрическую. Когда аккумулятор разрядится, его заряжают, пропуская через него электрический ток в обратном направлении.

В обратном направлении протекает и химическая реакция:

2РbSO 4 + 2Н 2 O → Рb + РbO 2 + 4Н + + 2SO 4 2- .

В этом случае электрическая энергия превратилась в химическую. Теперь аккумулятор снова имеет запас энергии и снова может разряжаться.

Все электрохимические реакции происходят при протекании электрического тока в цепи. Этот круг обязательно состоит из последовательно соединенных металлических проводников и раствора (или расплава) электролита. В металлических проводниках, как мы знаем, ток переносят электроны, в растворе электролитов ‒ ионы. Непрерывность протекания тока в цепи обеспечивается только тогда, когда происходят процессы на электродах, т.е. на границе металл ‒ электролит На одном электроде происходит процесс приема электронов ‒ восстановление, на втором электроде - процесс отдачи электронов, т.е. окисления.



Особенностью электрохимических процессов, в отличие от обычных химических, является пространственное разделение процессов окисления и восстановления. Из этих процессов, которые не могут происходить друг без друга, и состоит в целом химический процесс в электрохимической системе.

Если погрузить металлическую пластинку (электрод) в раствор электролита, то между пластинкой и раствором возникает разность потенциалов, которая называется электродного потенциала.

Рассмотрим причины его возникновения. В узлах кристаллической решетки металла содержатся только положительно заряженные ионы. Благодаря их взаимодействию с полярными молекулами растворителя, они отрываются от кристалла и переходят в раствор. Вследствие такого перехода в металлической пластинке остается избыток электронов, отчего она приобретает отрицательный заряд. Положительно заряженные ионы, которые перешли в раствор благодаря электростатическому притяжению, остаются непосредственно у поверхности металлического электрода. Образуется двойной электрический слой. Между электродом и раствором возникает скачок потенциала, который и называется электродным потенциалом.

Наряду с переходом ионов из металла в раствор происходить и обратный процесс. Скорость перехода ионов из металла в раствор V 1 может быть больше скорость обратного перехода ионов из раствора в металл V 2 (V 2 ˃ V 1).

Такая разница в скоростях приведет в результате к уменьшению количества положительных ионов в металле и увеличению их в растворе. Металлический электрод приобретает отрицательный заряд, раствор ‒ положительного.

Чем больше разница V 1 ‒V 2 , тем более негативным будет заряд металлического электрода. В свою очередь величина V 2 зависит от содержания ионов металла в растворе; большим их концентрациям соответствует большая скорость V 2 . Следовательно, с увеличением концентрации ионов в растворе уменьшается отрицательный заряд металлического электрода.

Если, наоборот, скорость перехода ионов металла в раствор будет меньше скорость обратного процесса (V 1 < V 2), то на металлическом электроде будет избыток положительных ионов, а в растворе ‒ их нехватка. В таком случае электрод вступит положительный заряд, а раствор ‒ негативного.

В обоих случаях разность потенциалов, которая возникает в результате неравномерного распределения зарядов, ускорять медленный процесс и тормозить быстрее. Вследствие этого наступит момент, когда скорости обоих процессов станут равными. Наступит равновесие, которое будет иметь динамичный характер. Переход ионов из металла в раствор и обратно будет происходить все время и в состоянии равновесия. Скорости этих процессов в состоянии равновесия будут одинаковыми (V 1p = V 2p). Величина электродного потенциала, которая хранится в состоянии равновесия, называется равновесным электродным потенциалом.

Потенциал, который возникнет между металлом и раствором, если погрузить металл в раствор, в котором концентрация ионов этого металла равна одному грамм-иона, называться нормальным или стандартным электродным потенциалом.

Если разместить нормальные потенциалы электродных реакций для различных металлов так, чтобы их алгебраические величины последовательно росли, то мы получим известный из общего курса химии ряд напряжений. В этом ряду все элементы размещены в зависимости от их электрохимических свойств, которые непосредственно связаны с химическими свойствами. Так, все металлы расположены в меди (т.е. с более негативными потенциалами), относительно легко окисляются, а все металлы, размещенные после меди, окисляются с достаточно большими трудностями.

К, Na, Са, Мg, А1, Мn, Zn, Fe,

Ni, Sn, Pb, Н2, Сu, Нg, Аg, Аu.

Каждый член ряда, как более активный, может вытеснять из соединений любого члена ряда, стоящего вправо от него в ряду напряжений.

Рассмотрим механизм действия гальванического элемента, схему которого представлен на рис. Элемент состоит из цинковой пластинки, погруженной в раствор сульфата цинка, и медной пластинки, погруженной в раствор сульфата меди.

Рис. Схема медно-цинкового гальванического элемента

Оба сосуды с растворами, которые называются полуэлементами, соединенные между собой электролитическим ключом в гальванический элемент. Этот ключ (стеклянная трубка, заполненная электролитом) позволяет ионам перемещаться из одного сосуда (полуэлемента) в другую. Вместе растворы сульфата цинка и сульфата меди не смешиваются.

Если электрическая цепь разомкнутое, то никаких изменений в металлических пластинках и в растворе не происходит, а когда замкнуть круг, то по кругу потечет ток. Электроны из места, где плотность отрицательного заряда выше (т.е. с цинковой пластинки), перемещаться в места с меньшей плотностью отрицательного заряда или к месту с положительным зарядом (т.е. к медной пластинки). Вследствие перемещения электронов равновесие на границе металл ‒ раствор нарушится. Избыток отрицательных зарядов в цинковой пластинке уменьшится, соответственно уменьшатся силы притяжения, и часть ионов цинка из двойного электрического слоя перейдет в общий объем раствора. Это приведет к уменьшению скорости процесса перехода ионов Zn 2+ из раствора в металл. Увеличится разница V 1 ‒V 2 (которая в состоянии равновесия равна нулю), и новое количество ионов цинка перейдет из металла в раствор. Это обусловит появление избытка электронов в цинковой пластинке, которые немедленно переместятся к медной пластинки, и опять все будет непрерывно повторяться. Вследствие этого цинк растворяться, а в кругу непрерывно протекать электрический ток.

Понятно, что непрерывное перемещение электронов от цинковой пластинки к медной возможно только тогда, когда они асимилируют на медной пластинке. Появление избытка электронов в медной пластинке приведет к перестройке двойного слоя. Отрицательные ионы SO 4 2- отталкиваться, а положительные ионы меди, которые есть в растворе, будут заходить в двойной электрический слой благодаря электростатическому притяжению, обусловленном появлением электронов. Скорость процесса перехода ионов в металлV 2 увеличится. Ионы Сu 2+ проникать в кристаллическую решетку медной пластинки, присоединяя электроны. Именно этот процесс ассимиляции электронов на медной пластинке обеспечит непрерывность процесса в целом.

Величина ЭДС Е равна разности электродных потенциалов Е 1 и Е 2 на электродах: Е = Е 1 ‒Е 2 .

Процессы, которые происходят на электродах, можно изобразить схемой: на грани цинковая пластинка ‒ электролит Zn ‒ 2е - = Zn 2+ , на грани медная пластинка электролит Сu 2+ + 2е - = Сu.

Как видим, процессы окисления цинка и восстановление меди разделены в пространстве, они происходят на разных электродах. В целом химическую реакцию, которая происходит в медно-цинковом элементе, можно записать в ионной форме так:

Zn + Сu 2+ = Zn 2+ + Сu.

Такая же картина будет наблюдаться и в том случае, когда обе пластинки будут заряжены отрицательно относительно раствора. Погрузим две медные пластинки в разбавленные растворы сульфата меди. Концентрация ионов меди в этих растворах С 1 и С 2 (С 2 > С 1). Предположим, что обе пластинки зарядятся негативно относительно растворов. Но пластинка А в сосуде с концентрацией раствора С 1 зарядится более негативно благодаря тому, что концентрация ионов меди в этом сосуде меньше, чем во второй сосуде, и соответственно скорость проникновения ионов Сu 2+ в кристаллическую решетку будет меньше. Если замкнуть круг, то электроны будут перемещаться от пластинки А, где их плотность больше, к пластинке В. На грани пластинки А с электролитом происходить процесс Сu° ‒ 2е - = Сu 2+ , на грани пластинки В с электролитом Сu 2+ + 2е - + Сu°.

Обе пластинки, как было уже отмечено, заряжены отрицательно относительно раствора. Но пластинка А заряжена отрицательно относительно пластинки В и поэтому в гальваническом элементе выполнять роль отрицательного электрода, а пластинка В ‒ положительного.

Величина ЭДС, равной разности электродных потенциалов, будет тем больше, чем больше разница концентраций ионов в растворах.

Уравнение Нернста - уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.

,

Электродный потенциал, - стандартный электродный потенциал, измеряется в вольтах;