Точки М и М1 называются симметричными относительно заданной прямой L , если эта прямая является серединным перпендикуляром к отрезку МM1 (рис 1). Каждая точка прямой L симметрична сама себе. Преобразование плоскости, при котором каждая точка отображается на симметричную ей точку относительно данной прямой L , называется осевой симметрией с осью L и обозначается SL : SL (M) = M1 .

Точки М и М1 взаимно симметричны относительно L , поэтому SL (M1 )=M . Следовательно, преобразование, обратное осевой симметрии, есть та же осевая симметрия: SL -1 = SL , SL ° SL = E . Иначе говоря, осевая симметрия плоскости является инволютивным преобразованием.

Образ данной точки при осевой симметрии можно просто построить, пользуясь только одним циркулем. Пусть L - ось симметрии, A и B - произвольные точки этой оси (рис 2). Если и SL (M) = M1 , то по свойству точек серединного перпендикуляра к отрезку имеем: AM = AM1 и BM = BM1 . Значит, точка M1 принадлежит двум окружностям: окружности с центром A радиуса AM и окружности с центром B радиуса BM (M - данная точка). Фигура F и её образ F1 при осевой симметрии называются симметричными фигурами относительно прямой L (рис 3).

Теорема. Осевая симметрия плоскости есть движение.

Если А и В - любые точки плоскости и SL (A) = A1 , SL (B) = B1 , то надо доказать, что A1 B1 = AB . Для этого введем прямоугольную систему координат OXY так, чтобы ось OX совпала с осью симметрии. Точки А и В имеют координаты А(x1 ,-y1 ) и B(x1 ,-y2 ) .Точки А1 и В1 имеют координаты A1 (x1 ,y1 ) и B1 (x1 ,y2 ) (рис 4 - 8). По формуле расстояния между двумя точками находим:

Из этих соотношений ясно, что АВ=А1 В1 , что и требовалось доказать.

Из сравнения ориентаций треугольника и его образа получаем, что осевая симметрия плоскости есть движение второго рода .

Осевая симметрия отображает каждую прямую на прямую. В частности, каждая из прямых, перпендикулярных оси симметрии, отображается этой симметрией на себя.


Теорема. Прямая, отличная от перпендикуляра к оси симметрии, и её образ при этой симметрии пересекаются на оси симметрии или ей параллельны.

Доказательство. Пусть дана прямая, не перпендикулярная оси L симметрии. Если m ? L= P и SL (m)=m1 , то m1 ?m и SL (P)=P , поэтому Pm1 (рис 9). Если же m || L , то m1 || L , так как в противном случае прямые m и m1 пересекались бы в точке прямой L , что противоречит условию m ||L (рис 10).


В силу определения равных фигур, прямые, симметричные относительно прямой L , образуют с прямой L равные углы (рис 9).

Прямая L называется осью симметрии фигуры F , если при симметрии с осью L фигура F отображается на себя: SL (F) =F . Говорят, что фигура F симметрична относительно прямой L .

Например, всякая прямая, содержащая центр окружности, является осью симметрии этой окружности. Действительно, пусть М - произвольная точка окружности щ с центром О , ОL , SL (M)= M1 . Тогда SL (O) = O и OM1 =OM , т. е. M1 є щ . Итак, образ любой точки окружности принадлежит этой окружности. Следовательно, SL (щ)=щ .

Осями симметрии пары непараллельных прямых служат две перпендикулярные прямые, содержащие биссектрисы углов между данными прямыми. Осью симметрии отрезка является содержащая его прямая, а также серединный перпендикуляр к этому отрезку.

Свойства осевой симметрии

  • 1. При осевой симметрии образом прямой является прямая, образом параллельных прямых являются параллельные прямые
  • 3. Осевая симметрия сохраняет простое отношение трех точек.
  • 3. При осевой симметрии отрезок переходит в отрезок, луч - в луч, полуплоскость - в полуплоскость.
  • 4. При осевой симметрии угол переходит в равный ему угол.
  • 5. При осевой симметрии с осью d всякая прямая, перпендикулярная оси d остается на месте.
  • 6. При осевой симметрии ортонормированный репер переходит в ортонормированный репер. При этом точка М с координатами х и у относительно репера R переходит в точку M` с теми же самыми координатами х и у, но относительно репера R`.
  • 7. Осевая симметрия плоскости переводит правый ортонормированный репер в левый и, наоборот, левый ортонормированный репер - в правый.
  • 8. Композиция двух осевых симметрий плоскости с параллельными осями есть параллельный перенос на вектор, перпендикулярный данным прямым, длина которого в два раза больше расстояния между данными прямыми

«Симметрия » в переводе с греческого означает «соразмерность» (повторяемость). Симметричные тела и предметы состоят из равнозначных, правильно повторяющихся в пространстве частей. Особенно разнообразна симметрия кристаллов. Различные кристаллы отличаются большей или меньшей симметричностью. Она является их важнейшим и специфическим свойством, отражающим закономерность внутреннего строения.

По более точному определению симметрия – это закономерная повторяемость элементов (или частей) фигуры или какого-либо тела, при которой фигура совмещается сама с собой при некоторых преобразованиях (вращение вокруг оси, отражение в плоскости). Подавляющее большинство кристаллов обладает симметрией.

Понятие симметрии включает в себя составные части – элементы симметрии. Сюда относятся плоскость симметрии , ось симметрии , центр симметрии , или центр инверсии .

Плоскость симметрии делит кристалл на две зеркально равные части. Обозначается она буквой Р. Части, на которые плоскость симметрии рассекает многогранник, относятся одна к другой, как предмет к своему изображению в зеркале разные кристаллы имеют различное количество плоскостей симметрии, которое ставится перед буквой Р. Наибольшее количество таких плоскостей у природных кристаллов – девять 9Р. В кристалле серы насчитывается 3Р, а у гипса только одна. Значит, в одном кристалле может быть несколько плоскостей симметрии. В некоторых кристаллах плоскость симметрии отсутствует.

Относительно элементов ограничения плоскость симметрии может занимать следующее положение:

  1. проходит через ребра;
  2. лежать перпендикулярно к ребрам в их серединах;
  3. проходить через грань перпендикулярно к ней;
  4. пересекать гранные углы в их вершинах.

В кристаллах возможны следующие количества плоскостей симметрии: 9Р, 7Р, 6Р, 5Р, 4Р, 3Р, 2Р, Р, отсутствие плоскости симметрии.

Ось симметрии

Ось симметрии – воображаемая ось, при повороте вокруг которой на некоторый угол фигура совмещается сама с собой в пространстве. Она обозначается буквой L. У кристаллов при вращении вокруг оси симметрии на полный оборот одинаковые элементы ограничения (грани, ребра, углы) могут повторяться только 2, 3, 4, 6 раз. Соответственно этому оси будут называться осями симметрии второго, третьего, четвертого и шестого порядка и обозначаться: L2, L3, L4 и L6.Порядок оси определяется числом совмещений при повороте на 360⁰С.

Ось симметрии первого порядка не принимается во внимание, так как ею обладают вообще не фигуры, в том числе и несимметричные. Количество осей одного и того же порядка пишут перед буквой L: 6L6, 3L4 и т.п.

Центр симметрии

Центр симметрии – это точка внутри кристалла, в которой пересекаются и делятся пополам линии, соединяющие одинаковые элементы ограничения кристалла (грани, ребра, углы). Обозначается она буквой С. Практически присутствие центра симметрии будет сказываться в том, что каждое ребро многогранника имеет параллельное себе ребро, каждая грань – такую же параллельную себе зеркально-обратную грань. Если же в многограннике присутствуют грани, не имеющие себе параллельных, то такой многогранник не обладает центром симметрии.

Достаточно поставить многогранник гранью на стол, чтобы заметить, имеется ли сверху такая же параллельная ей зеркально-обратная грань. Конечно, на параллельность нужно проверить все типы граней.

Существует ряд простых закономерностей, по которым сочетаются друг с другом элементы симметрии. Значение этих правил облегчает их нахождение.

  1. Линия пересечения двух или нескольких плоскостей является осью симметрии. Порядок такой оси равен числу пересекающихся в ней плоскостей.
  2. L6 может присутствовать в кристалле только в единственном числе.
  3. С L6 не могут комбинироваться ни L4, ни L3, но может сочетаться L2 причем L6 и L2 должны быть перпендикулярны; в таком случае присутствует 6L2.
  4. L4 может встречаться в единственном числе или трех взаимно перпендикулярных осей.
  5. L3 может встречаться в единственном числе или с 4L3.

Степенью симметрии называется совокупность всех элементов симметрии, которыми обладает данный кристалл.

Кристалл, имеющий форму куба, обладает высокой степенью симметрии. В нем присутствуют три оси симметрии четвертого порядка (3L4), проходящие через середины граней куба, четыре оси симметрии третьего порядка (4L3), проходящие через вершины трехгранных углов, и шесть осей второго порядка (6L2), проходящих через середины ребер. В точке пересечения осей симметрии располагается центр симметрии куба (С). Кроме того, в кубе можно провести девять плоскостей симметрии (9Р). Элементы симметрии кристалла можно изобразить кристаллографической формулой.

Для куба формула имеет вид: 9P, 3L4, 4L3, 6L2, C.

Русский ученый А.В. Гадолин в 1869 г. показал, что у кристаллов возможны 32 различных сочетания элементов симметрии, составляющих классы (виды) симметрии. Таким образом, класс объединяет группу кристаллов с одинаковой степенью симметрии.

Вам понадобится

  • - свойства симметричных точек;
  • - свойства симметричных фигур;
  • - линейка;
  • - угольник;
  • - циркуль;
  • - карандаш;
  • - лист бумаги;
  • - компьютер с графическим редактором.

Инструкция

Проведите прямую a, которая будет являться осью симметрии. Если ее координаты не заданы, начертите ее произвольно. С одной стороны от этой прямой поставьте произвольную точку A. необходимо найти симметричную точку.

Полезный совет

Свойства симметрии постоянно используются в программе AutoCAD. Для этого используется опция Mirror. Для построения равнобедренного треугольника или равнобедренной трапеции достаточно начертить нижнее основание и угол между ним и боковой стороной. Отразите их с помощью указанной команды и продлите боковые стороны до необходимой величины. В случае с треугольником это будет точка их пересечения, а для трапеции - заданная величина.

С симметрией вы постоянно сталкиваетесь в графических редакторах, когда пользуетесь опцией «отразить по вертикали/горизонтали». В этом случае за ось симметрии берется прямая, соответствующая одной из вертикальных или горизонтальных сторон рамки рисунка.

Источники:

  • как начертить центральную симметрию

Построение сечения конуса не такая уж сложная задача. Главное - соблюдать строгую последовательность действий. Тогда данная задача будет легко выполнима и не потребует от Вас больших трудозатрат.

Вам понадобится

  • - бумага;
  • - ручка;
  • - циркль;
  • - линейка.

Инструкция

При ответе на этот вопрос, сначала следует определиться – какими параметрами задано сечение.
Пусть это будет прямая пересечения плоскости l с плоскостью и точка О, которая местом пересечения с его сечением.

Построение иллюстрирует рис.1. Первый шаг построения сечения – это через центр сечения его диаметра, продленного до l перпендикулярно этой линии. В итоге получается точка L. Далее через т.О проведите прямую LW, и постройте две направляющие конуса, лежащие в главном сечении О2М и О2С. В пересечении этих направляющих лежат точка Q, а также уже показанная точка W. Это первые две точки искомого сечения.

Теперь проведите в основании конуса ВВ1 перпендикулярный МС и постройте образующие перпендикулярного сечения О2В и О2В1. В этом сечении через т.О проведите прямую RG, параллельную ВВ1. Т.R и т.G - еще две точки искомого сечения. Если бы сечения бал известен, то его можно было бы построить уже на этой стадии. Однако это вовсе не эллипс, а нечто эллипсообразное, имеющее симметрию относительно отрезка QW. Поэтому следует строить как можно больше точек сечения, чтобы соединяя их в дальнейшем плавной кривой получить наиболее достоверный эскиз.

Постройте произвольную точку сечения. Для этого проведите в основании конуса произвольный диаметр AN и постройте соответствующие направляющие О2A и O2N. Через т.О проведите прямую, проходящую через PQ и WG, до ее пересечения с только что построенными направляющими в точках P и E. Это еще две точки искомого сечения. Продолжая так же и дальше, можно сколь угодно искомых точек.

Правда, процедуру их получения можно немного упростить пользуясь симметрией относительно QW. Для этого можно в плоскости искомого сечения провести прямые SS’, параллельные RG до пересечения их с поверхность конуса. Построение завершается скруглением построенной ломаной из хорд. Достаточно построить половину искомого сечения в силу уже упомянутой симметрии относительно QW.

Видео по теме

Совет 3: Как построить график тригонометрической функции

Вам требуется начертить график тригонометрической функции ? Освойте алгоритм действий на примере построения синусоиды. Для решения поставленной задачи используйте метод исследования.

Вам понадобится

  • - линейка;
  • - карандаш;
  • - знание основ тригонометрии.

Инструкция

Видео по теме

Обратите внимание

Если две полуоси однополосного гиперболоида равны, то фигуру можно получить путем вращения гиперболы с полуосями, одна из которых вышеуказанная, а другая, отличающаяся от двух равных, вокруг мнимой оси.

Полезный совет

При рассмотрении этой фигуры относительно осей Oxz и Oyz видно, что ее главными сечениями являются гиперболы. А при разрезе данной пространственной фигуры вращения плоскостью Oxy ее сечение представляет собой эллипс. Горловой эллипс однополосного гиперболоида проходит через начало координат, ведь z=0.

Горловой эллипс описывается уравнением x²/a² +y²/b²=1, а другие эллипсы составляются по уравнению x²/a² +y²/b²=1+h²/c².

Источники:

  • Эллипсоиды, параболоиды, гиперболоиды. Прямолинейные образующие

Форма пятиконечной звезды повсеместно используется человеком с древних времен. Мы считаем ее форму прекрасной, так как бессознательно различаем в ней соотношения золотого сечения, т.е. красота пятиконечной звезды обоснована математически. Первым описал построение пятиконечной звезды Евклид в своих "Началах". Давайте же приобщимся к его опыту.

Вам понадобится

  • линейка;
  • карандаш;
  • циркуль;
  • транспортир.

Инструкция

Построение звезды сводится к построению с последующим соединением его вершин друг с другом последовательно через одну. Для того чтобы построить правильный необходимо разбить окружность на пять .
Постройте произвольную окружность при помощи циркуля. Обозначьте ее центр точкой O.

Отметьте точку A и при помощи линейки начертите отрезок ОА. Теперь необходимо разделить отрезок OA пополам, для этого из точки А проведите дугу радиусом ОА до пересечения ее с окружностью в двух точках M и N. Постройте отрезок MN. Точка Е, в которой MN пересекает OA, будет делить отрезок OA пополам.

Восстановите перпендикуляр OD к радиусу ОА и соедините точку D и E. Сделайте засечку B на OA из точки E радиусом ED.

Теперь при помощи отрезка DB разметьте окружность на пять равных частей. Обозначьте вершины правильного пятиугольника последовательно цифрами от 1 до 5. Соедините точки в следующей последовательности: 1 с 3, 2 с 4, 3 с 5, 4 с 1, 5 с 2. Вот и правильная пятиконечная звезда, в правильный пятиугольник. Именно таким способом строил

I . Симметрия в математике :

    Основные понятия и определения.

    Осевая симметрия (определения, план построения, примеры)

    Центральная симметрия (определения, план построения, при ­меры)

    Обобщающая таблица (все свойства, особенности)

II . Применения симметрии:

1) в математике

2) в химии

3) в биологии, ботанике и зоологии

4) в искусстве, литературе и архитектуре

    /dict/bse/article/00071/07200.htm

    /html/simmetr/index.html

    /sim/sim.ht

    /index.html

1. Основные понятия симметрии и ее виды.

Понятие симметрии пр оходит через всю историю человечества. Оно встречается уже у истоков человеческого знания. Возникло оно в связи с изучением живого ор­ганизма, а именно человека. И употреблялось скульпторами ещё в 5 веке до н. э. Слово “симметрия” греческое, оно означает “соразмерность, пропорциональность, одинаковость в расположении частей”. Его широко используют все без исключения направления современной науки. Об этой закономерности задумывались многие ве­ликие люди. Например, Л. Н. Толстой говорил: “Стоя перед черной доской и рисуя на ней мелом разные фигуры, я вдруг был поражен мыслью: почему симметрия по­нятна глазу? Что такое симметрия? Это врожденное чувство, отвечал я сам себе. На чем же оно основано?”. Действительно симметричность приятна глазу. Кто не любо­вался симметричностью творений природы: листьями, цветами, птицами, живот­ными; или творениями человека: зданиями, техникой, – всем тем, что нас с детства окружает, тем, что стремится к красоте и гармонии. Герман Вейль сказал: “Симмет­рия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство”. Герман Вейль – это немецкий математик. Его деятельность приходится на первую половину ХХ века. Именно он сформулировал определение симметрии, установил по каким признакам усмотреть наличие или, наоборот, отсутствие симметрии в том или ином случае. Таким обра­зом, математически строгое представление сформировалось сравнительно недавно – в начале ХХ века. Оно достаточно сложное. Мы же обратимся и еще раз вспомним те определения, которые даны нам в учебнике.

2. Осевая симметрия.

2.1 Основные определения

Определение. Две точки А и А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендику­лярна к нему. Каждая точка прямой а считается симметричной самой себе.

Определение. Фигура называется симметричной относительно прямой а , если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симмет­рии фигуры. Говорят также, что фигура обладает осевой симметрией.

2.2 План построения

И так, для построения симметричной фигуры относительно прямой от каждой точки проводим перпендикуляр к данной прямой и продлеваем его на такое же рас­стояние, отмечаем полученную точку. Так поступаем с каждой точкой, получаем симметричные вершины новой фигуры. Затем последовательно их соединяем и по­лучаем симметричную фигуру данной относительной оси.

2.3 Примеры фигур, обладающих осевой симметрией.


3. Центральная симметрия

3.1 Основные определения

Определение . Две точки А и А 1 называются симметричными относительно точки О, если О - середина отрезка АА 1 . Точка О считается симметричной са­мой себе.

Определение. Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре.

3.2 План построения

Построение треугольника симметричного данному относительно цен­тра О.

Чтобы построить точку, симметричную точке А относи­тельно точки О , достаточно провести прямую ОА (рис. 46) и по другую сторону от точки О от­ложить отрезок, равный отрезку ОА . Иными словами, точки А и ; В и ; С и симметричны относительно некоторой точки О. На рис. 46 по­строен треугольник, симметричный треуголь­нику ABC относительно точки О. Эти треугольники равны.

Построение симметричных точек относительно центра.

На рисунке точки М и М 1 , N и N 1 симметричны относительно точки О, а точки Р и Q не симметричны относительно этой точки.

Вообще фигуры, симметричные относительно некоторой точки, равны.

3.3 Примеры

Приведём примеры фигур, обладающие центральной симметрией. Простейшими фигурами, обладающими центральной симметрией, является окружность и паралле­лограмм.

Точка О называется центром симметрии фигуры. В подобных случаях фигура обладает центральной симметрией. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма- точка пересечения его диаго­налей.

Прямая также обладает центральной симметрией, однако в отличие от окруж­ности и параллелограмма, которые имеют только один центр симметрии (точка О на рисунке) у прямой их бесконечно много - любая точка прямой является её центром симметрии.

На рисунках показан угол симметричный относительно вершины, отрезок сим­метричный другому отрезку относительно центра А и четырехугольник симметрич­ный относительно своей вершины М.

Примером фигуры, не имеющей центра симметрии, является треугольник.

4. Итог урока

Обобщим полученные знания. Сегодня на уроке мы познакомились с двумя основ­ными видами симметрии: центральная и осевая. Посмотрим на экран и системати­зируем полученные знания.

Обобщающая таблица

Осевая симметрия

Центральная симметрия

Особенность

Все точки фигуры должны быть симметричны относительно какой-нибудь прямой.

Все точки фигуры должны, сим­метричны относительно точки, вы­бранной в качестве центра симмет­рии.

Свойства

    1. Симметричные точки лежат на перпендикулярах к прямой.

    3. Прямые переходят в прямые, углы в равные углы.

    4. Сохраняются размеры и формы фигур.

    1. Симметричные точки лежат на прямой, проходящей через центр и данную точку фигуры.

    2. Расстояние от точки до прямой равно расстоянию от прямой до симметричной точки.

3. Сохраняются размеры и формы фигур.

II. Применение симметрии

Математика

На уроках алгебры мы изу­чили графики функций y=x и y=x

На рисунках представлены различные картинки, изо­браженные с помощью вет­вей парабол.

(а) Октаэдр,

(б) ромбический додекаэдр, (в) гексагональной октаэдр.

Русский язык

Печатные буквы русского алфавита тоже обладают различными видами сим­метрий.

В русском языке есть «сим­метричные» слова - палин­дромы , которые можно чи­тать одинаково в двух на­правлениях.

А Д Л М П Т Ф Ш вертикальная ось

В Е З К С Э Ю - горизонтальная ось

Ж Н О Х - и вертикальная и горизонтальная

Б Г И Й Р У Ц Ч Щ Я – ни какой оси

Радар шалаш Алла Анна

Литература

Могут быть палиндромичес- кими и предложения. Брюсов написал стихотворение "Голос луны", в котором каждая строка - палиндром.

Посмотрите на четверости -шие А.С.Пушкина «Медный всадник». Если провести ли­нию после второй строчки мы можем заметить эле­менты осевой симметрии

А роза упала на лапу Азора.

Я иду с мечем судия. (Державин)

«Искать такси»

«Аргентина манит негра»,

«Ценит негра аргентинец»,

«Леша на полке клопа нашел».

В гранит оделася Нева;

Мосты повисли над водами;

Темно-зелеными садами

Ее покрылись острова…

Биология

Тело человека построено по принципу двусторонней симметрии. Большинство из нас рассматривает мозг как единую структуру, в дейст­вительности он разделён на две половины. Эти две части - два полушария - плотно прилегают друг к другу. В полном соответст­вии с общей симметрией тела человека каждое по­лушарие представляет со­бой почти точное зеркаль­ное отображение другого

Управление основными движениями тела человека и его сенсорными функ­циями равномерно распре­делено между двумя полу­шариями мозга. Левое по­лушарие контролирует пра­вую сторону мозга, а правое - левую сторону.

Ботаника

Цветок считается симмет­ричным, когда каждый око­лоцветник состоит из рав­ного числа частей. Цветки, имея парные части, счита­ются цветками с двойной симметрией и т.д. Тройная симметрия обычна для од­нодольных растений, пя­терная - для двудольных Характерной чертой строе­ния растений и их развития является спиральность.

Обратите внимание на по­беги листорасположения – это тоже своеобразный вид спирали – винтовая. Еще Гёте, который был не только великим поэтом, но и естествоиспытателем, считал спиральность одним из характерных признаков всех организмов, проявле­нием самой сокровенной сущности жизни. Спи­рально закручиваются усики растений, по спирали происходит рост тканей в стволах деревьев, по спи­рали расположены семечки в подсолнечнике, спираль­ные движения наблюда­ются при росте корней и побегов.

Характерной чертой строения растений и их раз­вития является спиральность.

Посмотрите на сосновую шишку. Чешуйки на ее поверхности расположены строго закономерно - по двум спиралям, которые пересекаются приблизительно под прямым углом. Число таких спиралей у сосновых шишек равно 8 и 13 или 13 и 21.


Зоология

Под симметрией у живот­ных понимают соответствие в размерах, форме и очерта­ниях, а также относительное расположение частей тела, находящихся на противопо­ложных сторонах разде­ляющей линии. При ради­альной или лучистой сим­метрии тело имеет форму короткого или длинного ци­линдра либо сосуда с цен­тральной осью, от которого отходят в радиальном по­рядке части тела. Это ки­шечнополостные, иглоко­жие, морские звёзды. При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны - брюшная и спинная - друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих.

Осевая симметрия


Различные виды симметрии физических явлений: сим­метрия электрического и магнитного полей (рис. 1)

Во взаимно перпендику­лярных плоскостях симмет­рично распространение электромагнитных волн (рис. 2)


рис.1 рис.2

Искусство

В произведениях искусства часто можно наблюдать зеркальную симметрию. Зеркальная" симметрия ши­роко встречается в произве­дениях искусства прими­тивных цивилизаций и в древней живописи. Средне­вековые религиозные кар­тины также характеризу­ются этим видом симмет­рии.

Одно из лучших ранних произведений Рафаэля – «Обручение Марии» - соз­дано в 1504 году. Под сол­нечным голубым небом раскинулась долина, увен­чанная белокаменным хра­мом. На первом плане – об­ряд обручения. Первосвя­щенник сближает руки Ма­рии и Иосифа. За Марией – группа девушек, за Иоси­фом – юношей. Обе части симметричной композиции скреплены встречным дви­жением персонажей. На со­временный вкус компози­ция такой картины скучна, поскольку симметрия слишком очевидна.



Химия

Молекула воды имеет плос­кость симметрии (прямая вертикальная линия).Ис­ключительно важную роль в мире живой природы иг­рают молекулы ДНК (де­зоксирибонуклеиновая ки­слота). Это двуцепочечный высокомолекулярный по­лимер, мономером которого являются нуклеотиды. Мо­лекулы ДНК имеют струк­туру двойной спирали, по­строенной по принципу комплементарности.

Архите ктура

Издавна человек использо­вал симметрию в архитек­туре. Особенно блиста­тельно использовали сим­метрию в архитектурных сооружениях древние зод­чие. Причем древнегрече­ские архитекторы были убеждены, что в своих про­изведениях они руково­дствуются законами, кото­рые управляют природой. Выбирая симметричные формы, художник тем са­мым выражал свое понима­ние природной гармонии как устойчивости и равно­весия.

В городе Осло, столице Норвегии, есть выразитель­ный ансамбль природы и художественных произве­дений. Это Фрогнер – парк – комплекс садово-парко­вой скульптуры, который создавался в течение 40 лет.


Дом Пашкова Лувр (Париж)


© Сухачева Елена Владимировна, 2008-2009гг.

Сегодня мы с вами поговорим о явлении, с которым каждому из нас приходится постоянно встречаемся в жизни: о симметрии. Что такое симметрия?

Приблизительно мы все понимаем значение этого термина. Словарь гласит: симметрия – это соразмерность и полное соответствие расположения частей чего-нибудь относительно прямой или точки. Симметрия бывает двух видов: осевая и лучевая. Сначала рассмотрим осевую. Это, скажем так,«зеркальная» симметрия, когда одна половина предмета полностью тождественна второй, но повторяет ее как отражение. Поглядите на половинки листа. Они зеркально симметричны. Симметричны и половины человеческого тела (анфас) – одинаковые руки и ноги, одинаковые глаза. Но не станем заблуждаться, на самом деле в органическом (живом) мире абсолютной симметрии не встретить! Половинки листа копируют друг друга далеко не в совершенстве, то же относится к человеческому телу (присмотритесь сами); так же обстоит дело и с другими организмами! Кстати, стоит добавить, что любое симметричное тело симметрично относительно зрителя только в одном положении. Стоит, скажем, повернуть лист, или поднять одну руку и что же? – сами видите.

Подлинной симметрии люди добиваются в произведениях своего труда (вещах) - одежде, машинах… В природе же она свойственна неорганическим образованиям, например, кристаллам.

Но перейдем к практике. Начинать со сложных объектов вроде людей и животных не стоит, попробуем в качестве первого упражнения на новом поприще дорисовать зеркальную половинку листа.

Рисуем симметричный предмет - урок 1

Следим, чтобы получилось как можно более похоже. Для этого будем буквально строить нашу половинку. Не подумайте, что так легко, тем более с первого раза, одним росчерком провести зеркально-соответствующую линию!

Разметим несколько опорных точек для будущей симметричной линии. Действуем так: проводим карандашом без нажима несколько перпендикуляров к оси симметрии - средней жилке листа. Четыре-пять пока хватит. И на этих перпендикулярах отмеряем вправо такое же расстояние, какое на левой половине до линии края листика. Советую пользоваться линейкой, не очень-то надейтесь на глазок. Нам, как правило, свойственно уменьшать рисунок - на опыте замечено. Отмерять расстояния пальцами не порекомендуем: слишком большая погрешность.

Полученные точки соединим карандашной линией:

Теперь придирчиво смотрим - действительно ли половины одинаковы. Если всё правильно - обведём фломастером, уточним нашу линию:

Лист тополя дорисовали, теперь можно замахнуться и на дубовый.

Нарисуем симметричную фигуру - урок 2

В этом случае сложность заключается в том,что обозначены жилки и они не перпендикулярны оси симметрии и придётся не только размеры но ещё и угол наклона точно соблюдать. Ну что ж - тренируем глазомер:

Вот и симметричный лист дуба нарисовался, вернее, мы его построили по всем правилам:

Как нарисовать симметричный предмет - урок 3

И закрепим тему - дорисуем симметричный лист сирени.

У него тоже интересная форма - сердцевидная и с ушками у основания придётся попыхтеть:

Вот и начертили:

Поглядите на получившуюся работу издали и оцените насколько точно нам удалось передать требуемое сходство. Вот вам совет: поглядите на ваше изображение в зеркале, и оно вам укажет, есть ли ошибки. Другой способ: перегните изображение точно по оси (правильно перегибать мы с вами уже научились) и вырежьте листик по изначальной линии. Посмотрите на саму фигуру и на отрезанную бумагу.