Поговорим о том, как определить тип гибридизации, а также рассмотрим геометрическое строение молекулы.

История появления термина

В начале двадцатого века Л. Полинглом была предложена теория геометрии молекул с ковалентной связью. В качестве основы для образования связи было взято перекрывание электронных облаков. Метод стали называть валентными связями. Как определять тип гибридизации атомов в соединениях? Автор теории предлагал учитывать смешивание гибридных орбиталей.

Определение

Для того чтобы понять, как определить тип гибридизации в соединениях, разберем, что обозначает этот термин.

Гибридизация представляет собой смешивание электронных орбиталей. Данный процесс сопровождается распределением в них энергии, изменением их формы. В зависимости от того, в каком количестве будут смешиваться s- и p-орбитали, тип гибридизации может быть различным. В органических соединениях атом углерода может существовать в состоянии sp, sp2, sp3. Есть и более сложные формы, в которых участвуют, помимо sp, d-орбитали.

Правила выявления в молекулах неорганических веществ

Выявить вариант гибридизации можно для соединений с ковалентной химической связью, имеющих тип АВп. А - основной атом, В - лиганд, п - число от двух и выше. В подобной ситуации в гибридизацию будут вступать только валентные орбитали главного атома.

Способы определения

Поговорим подробнее о том, как определить тип гибридизации. В химическом понимании данный термин предполагает изменение энергии и формы орбиталей. Наблюдается подобный процесс в тех случаях, когда для образования связи используют электроны, которые принадлежат различным типам.

Чтобы понять, как определить тип гибридизации, рассмотрим молекулу метана. Данное вещество является первым представителем гомологического ряда насыщенных (предельных) углеводородов. В пространстве молекула СН4 является тетраэдром. Единственный атом углерода образует с водородами связи, сходные по энергии и длине. Для того чтобы образовались такие гибридные облака, используются три р- и один эс-электрон.

Четыре облака смешиваются, и возникает четыре одинаковых (гибридных) вида, имеющих форму неправильной восьмерки. Называют такой тип гибридизации sp3. Все углеводороды, в составе которых только простые (одинарные) связи, характеризуются именно таким типом гибридизации атома углерода. Валентный угол составляет 109 градусов 28 минут.

Продолжим разговор о том, как определить тип гибридизации. Примеры ряда этилена дают представление о sp2-гибридизации. Например, в молекуле этилена из четырех в образовании химической связи используется только три. Оставшийся негибридный р-электрон уходит на образование двойной связи.

Ацетилен является простейшим представителем класса СпН2п-2. Особенностью этого класса углеводородов является наличие тройной связи. Из четырех валентных электронов углеродного атома только два меняют свою форму и энергию, становясь гибридными. Два оставшихся электрона принимают участие в образовании двух двойных связей, определяя ненасыщенный характер этого класса органических соединений.

Заключение

Рассматривая вопрос, касающийся для органических и для учитывают гибридизацию При этом происходит выравнивание их энергии и формы. Электрон, располагающийся вблизи ядра связанного атома, характеризуется совокупностью орбиталей, которые обладают одинаковым Информация о типе гибридизации дает возможность оценивать химические свойства вещества.

В процессе определения геометрической формы химической частицы важно учитывать, что пары валентных электронов основного атома, включая и те, которые не образуют химической связи, находятся на большом расстоянии друг от друга в пространстве.

Особенности термина

Рассматривая вопрос, касающийся ковалентной химической связи, часто применяют какое понятие, как гибридизация атомных орбиталей. Этот термин связан с выравниванием формы и энергии. Гибридизация атомных орбиталей связана с квантово-химическим процессом перестройки. Орбитали в сравнении с исходными атомами имеют иное строение. Суть гибридизации заключается в том, что тот электрон, который располагается рядом с ядром связанного атома, определяется не конкретной атомной орбиталью, а их совокупностью с равным главным квантовым числом. В основном данный процесс касается высших, близких по энергии атомных орбиталей, имеющих электроны.

Специфика процесса

Типы гибридизации атомов в молекулах зависят от того, как происходит ориентация новых орбиталей. По типу гибридизации можно определить геометрию иона либо молекулы, предположить особенности химических свойств.

Типы гибридизации

Такой тип гибридизации, как sp, представляет собой линейную структуру, угол между связями составляет 180 градусов. Примером молекулы с подобным вариантом гибридизации является BeCl 2 .

Следующий тип гибридизации - sp 2 . Молекулы характеризуются треугольной формой, угол между связями составляет 120 градусов. Типичным примером такого варианта гибридизации является BCl 3 .

Тип гибридизации sp 3 предполагает тетраэдрическое строение молекулы, типичным примером вещества с данным вариантом гибридизации является молекула метана CH 4 . Валентный угол в таком случае составляет 109 градусов 28 минут.

В гибридизации принимают непосредственное участие не только парные электроны, но и неразделенные пары электронов.

Гибридизация в молекуле воды

К примеру, в молекуле воды между атомом кислорода и атомами водорода существуют две ковалентные полярные связи. Кроме того, сам атом кислорода обладает двумя парами внешних электронов, которые не принимают участия в создании химической связи. Эти 4 электронные пары в пространстве занимают определенное место вокруг кислородного атома. Так как все они обладают одинаковым зарядом, в пространстве они отталкиваются, электронные облака находятся друг от друга на существенном расстоянии. Тип гибридизации атомов в данном веществе предполагает изменение формы атомных орбиталей, происходит их вытягивание и выстраивание к вершинам тетраэдра. В результате молекула воды приобретает угловую форму, между связями кислород-водород валентный угол составляет 104,5 o .

Чтобы предсказать тип гибридизации, можно воспользоваться донорно-акцепторным механизмом образования химической связи. В результате осуществляется перекрытие свободных орбиталей элемента с меньшей электроотрицательность, а также орбиталей элемента с большей электрической отрицательностью, на которой находится пара электронов. В процессе составления электронной конфигурации атома учитывается их степень окисления.

Правила выявления вида гибридизации

Для того чтобы определить тип гибридизации углерода, можно использовать определённые правила:

  • выявляют центральный атом, вычисляют количество σ-связей;
  • ставят в частице степени окисления атомов;
  • записывают электронную конфигурацию главного атома в требуемой степени окисления;
  • составляют схему распределения по орбиталям валентных электронов, спаривая электроны;
  • выделяют орбитали, которые принимают непосредственно участие в образовании связи, находят неспаренные электроны (при недостаточном для гибридизации количестве валентных орбиталей применяют орбитали следующего энергетического уровня).

Геометрия молекулы определяется типом гибридизации. На нее не влияет присутствие пи-связей. В случае дополнительного связывания возможно изменение валентного угла, причина состоит во взаимном отталкивании электронов, образующих кратную связь. Так, в молекуле оксида азота (4) при sp 2 -гибридизации происходит возрастание валентного угла со 120 градусов до 134 градусов.

Гибридизация в молекуле аммиака

Неразделенная пара электронов оказывает влияние на результирующий показатель дипольного момента всей молекулы. В аммиаке тетраэдрическое строение вместе с неразделенной парой электронов. Ионность связи азот-водород и азот-фтор имеют показатели 15 и 19 процентов, длины определены в 101 и 137 пм соответственно. Таким образом, в молекуле фторида азота должен быть больший дипольный момент, но результаты эксперимента свидетельствуют об обратном.

Гибридизация в органических соединениях

Для каждого класса углеводородов характерен свой тип гибридизации. Так, при образовании молекул класса алканов (предельных углеводородов) все четыре электрона атома углерода образуют гибридные орбитали. При их перекрывании образуется 4 гибридных облака, вытраиваемых к вершинам тетраэдра. Далее их вершины перекрываются с негибридными s-орбиталями водорода, образуя простую связь. Для насыщенных углеводородов характерна sp 3 -гибридизация.

У ненасыщенных алкенов (их типичным представителем является этилен) в гибридизации принимают участие только три электронных орбитали - s и 2 p, три гибридных орбитали образуют в пространстве форму треугольника. Негибридные p-орбитали перекрываются, создавая в молекуле кратную связь. Этот класс органических углеводородов характеризуется sp 2 -гибридным состоянием углеродного атома.

Алкины отличаются от предыдущего класса углеводородов тем, что в процессе гибридизации участвуют всего два вида орбиталей: s и p. Оставшиеся у каждого атома углерода два негибридных p-электрона перекрываются в двух направлениях, образуя две кратные связи. Данный класс углеводородов характеризуется sp-гибридным состоянием углеродного атома.

Заключение

Благодаря определению вида гибридизации в молекуле можно объяснить строение разных неорганических и органических веществ, предсказать возможные химические свойства конкретного вещества.

Гибридизация атомных орбиталей и геометрия молекул

Важной характеристикой молекулы, состоящей более чем из двух атомов, является ее геометрическая конфигурация. Она определяется взаимным расположением атомных орбиталей, участвующих в образовании химических связей.

Перекрывание электронных облаков возможно только при определенной взаимной ориентации электронных облаков; при этом область перекрывания располагается в определенном направлении по отношению к взаимодействующим атомам.

Таблица 1 Гибридизация орбиталей и пространственная конфигурация молекул

Возбужденный атом бериллия имеет конфигурацию 2s 1 2p 1 , возбужденный атом бора - 2s 1 2p 2 и возбужденный атом углерода - 2s 1 2p 3 . Поэтому можно считать, что в образовании химических связей могут участвовать не одинаковые, а различные атомные орбитали. Например, в таких соединениях как BeCl 2 , BeCl 3 ,CCl 4 должны быть неравноценные по прочности и направлению связи, причем σ-связи из p-орбиталей должны быть более прочными, чем связи из s-орбиталей, т.к. для p-орбиталей имеются более благоприятные условия для перекрывания. Однако опыт показывает, что в молекулах, содержащих центральные атомы с различными валентными орбиталями (s, p, d), все связи равноценны. Объяснение этому дали Слейтер и Полинг. Они пришли к выводу, что различные орбитали, не сильно отличающиеся по энергиям, образуют соответствующее число гибридных орбиталей. Гибридные (смешанные) орбитали образуются из различных атомных орбиталей. Число гибридных орбиталей равно числу атомных орбиталей, участвующих в гибридизации. Гибридные орбитали одинаковы по форме электронного облака и по энергии. По сравнению с атомными орбиталями они более вытянуты в направлении образования химических связей и поэтому обусловливают лучшее перекрывание электронных облаков.

Гибридизация атомных орбиталей требует затрат энергии, поэтому гибридные орбитали в изолированном атоме неустойчивы и стремятся превратиться в чистые АО. При образовании химических связей гибридные орбитали стабилизируются. Вследствие более прочных связей, образованных гибридными орбиталями, из системы выделяется больше энергии, и поэтому система становится более стабильной.

sp–гибридизация имеет место, например, при образовании галогенидов Be, Zn, Co и Hg (II). В валентном состоянии все галогениды металлов содержат на соответствующем энергетическом уровне s и p-неспаренные электроны. При образовании молекулы одна s- и одна р-орбиталь образуют две гибридные sp-орбитали под углом 180 о.



Рис.3 sp-гибридные орбитали

Экспериментальные данные показывают, что все галогениды Be, Zn, Cd и Hg (II) линейны и обе связи имеют одинаковую длину.

sp 2 -гибридизация

В результате гибридизации одной s-орбитали и двух p-орбиталей образуются три гибридные sp 2 -орбитали, расположенные в одной плоскости под углом 120 о друг к другу. Такова, например, конфигурация молекулы BF 3:

Рис.4 sp 2 -гибридизация

sp 3 -гибридизация

sp 3 -гибридизация характерна для соединений углерода. В результате гибридизации одной s-орбитали и трех

р-орбиталей образуются четыре гибридные sp 3 -орбитали, направленные к вершинам тетраэдра с углом между орбиталями 109,5 о. Гибридизация проявляется в полной равноценности связей атома углерода с другими атомами в соединениях, например, в CH 4 , CCl 4 , C(CH 3) 4 и др.

Рис.5 sp 3 -гибридизация

Если все гибридные орбитали связаны с одинаковыми атомами, то связи ничем не отличаются друг от друга. В других случаях встречаются небольшие отклонения от стандартных валентных углов. Например, в молекуле воды H 2 O кислород - sp 3 -гибридный, находится в центре неправильного тетраэдра, в вершины которого "смотрят" два атома водорода и две неподеленные пары электронов (рис. 2). Форма молекулы угловая, если смотреть по центрам атомов. Валентный угол HОН составляет 105 о, что довольно близко к теоретическому значению 109 о.

Рис.6 sp 3 -гибридизация атомов кислорода и азота в молекулах а) H 2 O и б) NCl 3 .

Если бы не происходило гибридизации (“выравнивания” связей O-H), валентный угол HOH был бы равен 90°, потому что атомы водорода были бы присоединены к двум взаимно перпендикулярным р-орбиталям. В этом случае наш мир выглядел бы, вероятно, совершенно по-другому.

Теория гибридизации объясняет геометрию молекулы аммиака. В результате гибридизации 2s и трёх 2p орбиталей азота образуются четыре гибридные орбитали sp 3 . Конфигурация молекулы представляет из себя искажённый тетраэдр, в котором три гибридных орбитали участвуют в образовании химической связи, а четвёртая с парой электронов – нет. Углы между связями N-H не равны 90 о как в пирамиде, но и не равны 109,5 о, соответствующие тетраэдру.

Рис.7 sp 3 - гибридизация в молекуле аммиака

При взаимодействии аммиака с ионом водорода в результате донорно-акцепторного взаимодействия образуется ион аммония, конфигурация которого представляет собой тетраэдр.

Гибридизация объясняет также отличие угла между связями О-Н в угловой молекуле воды. В результате гибридизации 2s и трёх 2p орбиталей кислорода образуются четыре гибридных орбитали sp 3 , из которых только две участвуют в образовании химической связи, что приводит к искажению угла, соответсвующего тетраэдру.

Рис.8 sp 3 -гибридизация в молекуле воды

В гибридизацию могут включаться не только s- и р-, но и d- и f-орбитали.

При sp 3 d 2 -гибридизации образуется 6 равноценных облаков. Она наблюдается в таких соединениях как 4- , 4- . При этом молекула имеет конфигурацию октаэдра:

Рис. 9 d 2 sp 3 -гибридизация в ионе 4-

Представления о гибридизации дают возможность понять такие особенности строения молекул, которые не могут быть объяснены другим способом.

Гибридизация атомных орбиталей (АО) приводит к смещению электронного облака в направлении образования связи с другими атомами. В результате области перекрывания гибридных орбиталей оказываются больше, чем для чистых орбиталей и прочность связи увеличивается.

ГИБРИДИЗАЦИЯ - это явление взаимодействия между собой молекулярных орбиталей, близких по энергии и имеющих общие элементы симметрии, с образованием гибридных орбиталей с более низкой энергией.

Чем полнее в пространстве перекрываются друг с другом электронные облака, участвующие в химической связи, тем меньшим запасом энергии обладают электроны, находящиеся в области перекрывания и осуществляющие связь, и тем прочнее химическая связь между этими атомами

Иногда связь между атомами прочнее, чем этого можно было ожидать на основании расчета. Предполагается, что атомная орбиталь принимает форму, позволяющую ей более полно перекрываться с орбиталью соседнего атома. Изменить свою форму атомная орбиталь может, лишь комбинируясь с другими атомными орбиталями иной симметрии этого же атома. В результате комбинации различных орбиталей (s, p, d) возникают новые атомные орбитали промежуточной формы, которые называются гибридными .

Перестройка различных атомных орбиталей в новые орбитали, усредненные по форме называется гибридизацией .

Число гибридных орбиталей равно числу исходных. Так, при комбинации s- и р-орбиталей (sp-гиб­ридизация) возникают две гибридные орбитали, которые ориентируются под углом 180° друг к другу, рис.3, табл. 5 и 6.

(s+p)-орбитали Две sp- орбитали Две sp-гибридные

орбитали

Рисунок 3 – sp – Гибридизация валентных орбиталей


Таблица 6 – Образование гибридных орбиталей


Таблица 7 – Образование некоторых молекул V и VI периодов

Химическая связь, образуемая электронами гибридных орбиталей, прочнее связи с участием электронов негибридных орбиталей, так как при гибридизации перекрывание происходит в большей степени. Гибридные орбитали образуют только s-связи .

Подвергаться гибридизации могут орбитали, которые имеют близкие энергии. У атомов с малым значением заряд ядра для гибридизации пригодны только s– и р –орбитали. Это наиболее характерно для элементов второго периода II – VI групп, табл. 6 и 7.

В группах сверху вниз с увеличением радиуса атома способность образовывать ковалентные связи ослабевавает, усиливается различие в энергиях s - и р-электронов, уменьшается возможность их гибридизации.

Электронные орбитали, участвующие в образовании связей, и их пространственная ориентация определяют геометрическую форму молекул.

Линейная форма молекул . Соединения, имеющие линейную форму молекул, образуются при перекрывании:

1. Двух s– орбиталей (s – s связь): Н 2 , Na 2 , K 2 и др.

2. s - и р–орбиталей (s – р связь): НС1, НВr и др.

3. Двух р– орбиталей (р – р связь): F 2 , C1 2 , Вr 2 и т.д.

s–s s–p р–р

Рисунок 4 – Линейные молекулы

Линейную форму молекул образуют также атомы некоторых элементов II группы с атомами водорода или галогенов (ВеН 2 , ВеГ 2 , ZnГ 2). Рассмотрим образование молекул ВеС1 2 . Атом бериллия в возбужденном состоянии имеет два неспаренных электрона (2s l и 2р 1), следовательно, происходит sp–гибридизация, при которой образуются две sp-гибридные орбитали, расположенные относительно друг друга под углом 180° (см гибридизацию орбиталей). При взаимодействии бериллия с галогенами происходит перекрывая двух sp–гибридных орбиталей атома бериллия с р–орбиталями двух атомов хлора, в результате образуется молекула линейной формы, рис. 5.

Рисунок 5 – Линейная молекула BeCl 2

Треугольная форма молекул имеет место при образо­вании галогенидов бора, алюминия. Возбужденный атом бо­та имеет три неспаренных электрона (2s 1 и 2р 2), При образовании химических связей происходит sp 2 -гибридизация и образуются три sp 2 - гибиридные орбитали, которые лежат в одной плоскости и ориентированы друг к другу под углом 120°, рис. 6.

(s+p+p)- три sp 2 - гибрид­ные

орбитали орбитали

Рисунок 6 – sp 2 –Гибридизация валентных орбиталей (а) и

треугольная молекула ВСl 3 (б)

При взаимодействии бора с хлором происходит перекрывание трех sр 2 -гибридных орбиталей атома бора с р-орбиталями трех атомов хлора, в результате образуется молекула, имеющая форму плоского треугольника. Валентный угол в молекуле ВСl 3 равен 120°.

Тетраэдрическая форма молекулы характерна для соединений элементов IV группы главной подгруппы с галогенами, водородом. Так, атом углерода в возбужденном со­стоянии имеет четыре неспаренных электрона (2s 1 и 2р 3) следовательно, происходит sp-гибридизация, при которой образуются четыре гибридные орбитали, расположенные друг к другу под углом 109,28°, рис. 7.

(s+p+p+p)- четыре sp 3 -гибрид­ные

орбитали орбитали

Рисунок 7 – sp 3 –Гибридизация валентных орбиталей (а) и

тетраэдрическая молекула СН 4 (б)

При перекрывании четырех sp 3 -гибридных орбиталей атома углерода и s-орбиталей четырех атомов водорода образуется молекула метана, которая имеет форму тетраэдра. Валентный угол равен 109,28°.

Рассмотренные геометрические формы молекул (линейные, треугольные, тетраэдрические) являются идеальными (правило Гиллеспи).

В отличие от выше рассмотренных соединений молекулы элементов V и VI групп главных подгрупп имеют валентные неподеленные пары электронов, поэтому углы между связями оказываются меньшими по сравнению с идеальным молекулами.

Пирамидальная форма молекул имеет место при образовании водородных соединений элементов V групп главной подгруппы. При образовании химической связи, например, у атома азота также как и у атома углерода происходит sp 3 -гибридизация и образуется четыре sp 3 -гибридные орбитали, которые ориентированы под углом 109,28 о друг к другу. Но в отличие от атома углерода у атома азота в гибридизации принимают участие не только одноэлектронные орбитали (2р 3), но и двухэлектронная (2s 2). Поэтому из четырех sp 3 -гибридных орбиталей на трех находятся по одному электрону (одноэлектронная орбиталь), эти орбитали образуют связи с тремя атомами водорода. Четвертая орбиталь с неподелениой парой электронов не принимает участия в образовании связи. Молекула NH 3 имеет форму пирамиды, рис. 8.

Рисунок 8 – Пирамидальная молекула аммиака

В вершине пирамиды находится атом азота, а в углах (треугольника) основания – атомы водорода. Валентный угол равен 107,3°. Отклонение значения угла от тетраэдрического (109,28°) обусловлено отталкиванием между неподеленной парой электронов на четвертой sp 3 -гибридной ор­битали и связывающими парами на трех остальных орбиталях, т.е. sp 3 -гибридная орбиталь с неподеленной парой электронов отталкивает в направлении от себя три осталь­ные орбитали связи N–H, уменьшая угол до 107,3°.

В соответствии с правилом Гиллеспи: если централь­ный атом относится к элементам третьего или последующих периодов, а концевые атомы принадлежат менее электроотри­цательным элементам, чем галогены, то образование связей осуществляется через чистые р - орбитали и валентные углы становятся » 90°, следовательно, у аналогов азота (Р, As, Sb) гибридизация орбиталей в молекулах водородных соединений не наблюдается. Например, в образовании молекулы фосфина (РН 3) участвуют три неспаренных р-электрона (3s 2 и 3р 3), электронные орбитали которых расположены в трех взаимно перпендикулярных направле­ниях, и s-электроны трех атомов водо­рода. Связи располагаются вдоль трех осей р-орбиталей. Образовавшиеся молекулы имеют, как и молекулы NН 3 , пирамидальную форму, но в отличие от молекулы NН 3 , в молекуле РН 3 валентный угол равен 93,3°, а в соеди­нениях AsH 3 и SbH 3 – соответственно 91,8 и 91,3°, рис. 9 и табл. 4.

Рисунок 9 – Молекула РН 3

Неподеленная пара электронов будет занимать нес­вязывающую s- орбиталь.

Угловую форму молекул образуют водородные соединения элементов VI группы главной подгруппы. Рассмотренные особенности образования связей в соединениях элементов V группы характерны и для водородных соединений элементов VI группы. Так, в молекуле воды атом кислорода, так же как и атом азота, находится в состоянии sp 3 -гибридизаци. Из четырех sp 3 -гибридных орбитам на двух находится по одному электрону, эти орбитали образуют связи с двумя атомами водорода.

Две другие из четырех sp 3 -гибридных орбиталей содержат по неподеленной паре электронов и не принимав участия в образовании связи.

Молекула Н 2 О имеет угловую форму, валентный угол равен 104,5°. Отклонение значения угла от тетраэдрического в еще большей степени обусловлено отталкиванием от двух неподеленных пар электронов, рис. 10.

Рисунок 10 – Угловая молекула воды

Угловую форму молекул имеют H 2 S, H 2 Se, H 2 Te, только у аналогов кислорода образование связей в соединенн Н 2 Э осуществляется через чистые р-орбитали (правило Гиллеспи), поэтому валентные углы составляют »90°. Так, в молекулах H 2 S, H 2 Se, H 2 Te они соответственно равны 92; 91; 89,5°.

Таблица 8 – Молекулы водородных соединений элементов 2-го периода

Концепция гибридизации

Концепция гибридизации валентных атомных орбиталей была предложена американским химиком Лайнусом Полингом для ответа на вопрос, почему при наличии у центрального атома разных (s, p, d) валентных орбиталей, образованные им связи в многоатомных молекулах с одинаковыми лигандами оказываются эквивалентными по своим энергетическим и пространственным характеристикам.

Представления о гибридизации занимают центральное место в методе валентных связей . Сама гибридизация не является реальным физическим процессом, а только удобной моделью, позволяющей объяснить электронное строение молекул, в частности гипотетические видоизменения атомных орбиталей при образовании ковалентной химической связи , в частности, выравнивание длин химических связей и валентных углов в молекуле.

Концепция гибридизации с успехом была применена для качественного описания простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода. В настоящее время используется в основном в методических целях и в синтетической органической химии .

Этот принцип нашёл отражение в теории отталкивания электронных пар Гиллеспи - Найхолма. Первое и наиболее важное правило которое формулировалось следующим образом:

«Электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга, т.е электронные пары ведут себя так, как если бы они взаимно отталкивались» .

Второе правило состоит в том, что «все электронные пары, входящие в валентную электронную оболочку, считаются расположенными на одинаковом расстоянии от ядра» .

Виды гибридизации

sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp 2 -гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28", что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Гибридизация и геометрия молекул

Представления о гибридизации атомных орбиталей лежат в основе теории отталкивания электронных пар Гиллеспи-Найхолма . Каждому типу гибридизации соответствует строго определённая пространственная ориентация гибридных орбиталей центрального атома, что позволяет её использовать как основу стереохимических представлений в неорганической химии.

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары) .

Тип гибридизации Число
гибридных орбиталей
Геометрия Структура Примеры
sp 2 Линейная BeF 2 , CO 2 , NO 2 +
sp 2 3 Треугольная BF 3 , NO 3 - , CO 3 2-
sp 3 4 Тетраэдрическая CH 4 , ClO 4 - , SO 4 2- , NH 4 +
dsp 2 4 Плоскоквадратная Ni(CO) 4 , XeF 4
sp 3 d 5 Гексаэдрическая PCl 5 , AsF 5
sp 3 d 2 6 Октаэдрическая SF 6 , Fe(CN) 6 3- , CoF 6 3-

Ссылки

Литература

  • Паулинг Л. Природа химической связи / Пер. с англ. М. Е. Дяткиной. Под ред. проф. Я. К. Сыркина. - М.; Л.: Госхимиздат, 1947. - 440 с.
  • Полинг Л. Общая химия. Пер. с англ. - М .: Мир, 1974. - 846 с.
  • Минкин В. И., Симкин Б. Я., Миняев Р. М. Теория строения молекул. - Ростов-на-Дону: Феникс, 1997. - С. 397-406. - ISBN 5-222-00106-7
  • Гиллеспи Р. Геометрия молекул / Пер. с англ. Е. З. Засорина и В. С. Мастрюкова, под ред. Ю. А. Пентина. - М .: Мир, 1975. - 278 с.

См. также

Примечания


Wikimedia Foundation . 2010 .