Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

НАЗВА УЧБОВОГО ЗАКЛАДУ

Разновидности систем счисления

Понятие системы счисления. Виды систем счисления

Система счисления -- совокупность нескольких названий и знаков, позволяющая записать любое число и дать ему имя.

Система счисления:

· даёт представления множества чисел (целых и/или вещественных);

· даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);

· отражает алгебраическую и арифметическую структуру чисел.

Системы счисления подразделяются на:

· Позиционные;

· Непозиционные;

· Смешанные.

Позиционные системы счисления

Позиционная система счисления -- это система, в которой значение каждой цифры зависит от ее числового эквивалента и от ее места (позиции) в числе, т.е. один и тот же символ (цифра) может принимать различные значения.

Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам. Развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации.

Наиболее известной позиционной системой счисления является десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Любая позиционная система счисления характеризуется основанием. Основание или базис (n) естественной позиционной системы счисления -- это количество знаков или символов, используемых для изображения числа в данной системе. Поэтому, возможно бесчисленное множество позиционных систем, т.к. за основание можно принять любое натуральное число n>1, образовав новую систему счисления.

Когда представляют или записывают, некоторое число в позиционной системе счисления, размещают соответствующие цифры числа по отдельным нужным позициям, которые принято называть разрядами числа в данной позиционной системе счисления. Количество разрядов в записи числа называется разрядностью числа и совпадает с его длиной.

Общая система счисления может быть определена, как такая группировка целых и дробных чисел, при которой каждое из них представляется формулой:

где x -- произвольное число, записанное в системе счисления с основанием n; символ ai -- коэффициент ряда, т.е. i-таю цифра записи числа; k, m -- количество целых и дробных разрядов соответственно.

Каждая степень nk в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя k (номера разряда). Номера разрядов в позиционной системе счисления отсчитываются в целой части влево от запятой, а в дробной -- вправо от запятой. Причем, нумерация разрядов начинается с 0. Величина основания позиционной системы счисления определяет ее название: для десятичной системы это будет 10, для восьмеричной -- 8, для двоичной -- 2 и т.д. Обычно вместо названия системы счисления используют термин "код числа". Например, под понятием двоичный код подразумевается число, представленное в двоичной системе счисления, под понятием десятичный код - в десятичной системе счисления и т.д.

Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число x записывают в виде последовательности его n-ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

Наиболее употребляемыми в настоящее время позиционными системами являются:

· 2 -- двоичная (в дискретной математике, информатике, программировании);

· 3 -- троичная (в троичных ЭВМ (например, «Сетунь»));

· 8 -- восьмеричная (используется в программировании, информатике);

· 10 -- десятичная (используется повсеместно);

· 12 -- двенадцатеричная (счёт дюжинами);

· 16 -- шестнадцатеричная (используется в программировании, информатике);

· 60 -- шестидесятеричная (единицы измерения времени, измерение углов и, в частности, координат, долготы и широты).

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.

Двоичная система счисления -- позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах. В двоичной системе счисления числа записываются с помощью двух символов (0 и 1). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 510, в двоичной 1012. Иногда двоичное число обозначают префиксом 0b, например 0b101.

Правила переводов

Перевод из любой системы счисления в десятичную систему счисления

Для перевода целого числа из любой системы счисления в десятичную, необходимо записать данное число в общем виде:

anbn+an-1bn-1+an-2bn-2+...+a2b2+a1b1+a0b0

Например: переведем число 12568 в десятичную систему счисления.

12568=1·83 +2·82 +5·81 +6·80 =1·512+2·64+5·8+6·1=68610.

Перевод числа из десятичной системы счисления в другую систему

1) Делим данное число на основание той системы, в которую необходимо перевести число.

2) Полученное число делим аналогично на основание системы, в которую необходимо перевести число.

3) Пункт 2 повторяем до тех пор пока, полученное частное не будет меньше основания.

4) Выписываем остатки от деления в порядке от последнего к первому.

Правило перевода чисел из двоичной системы счисления в восьмеричную

1) Разбиваем число по три цифры на группы начиная с младшего разряда.

Если не хватает до целой тройки цифр, то добавляем необходимое количество нулей слева.

2) Каждую полученную тройку цифр заменяем цифрой из восьмеричной системы счисления.

Двоичные триады

Восьмеричные цифры

3) Дробную часть разбиваем на тройки вправо от запятой.

Перевод чисел из двоичной системы счисления в шестнадцатеричную

1) Разбиваем число по четыре цифры на группы начиная с младшего разряда.

Если не хватает до целой четверки цифр, то добавляем необходимое количество нулей слева.

2) Каждую полученную четверку цифр заменяем цифрой из восьмеричной системы счисления.

3) Дробную часть разбиваем на четверки вправо от запятой.

Если не хватает цифр, то приписываем нули справа.

Правило перевода чисел из восьмеричной системы счисления в двоичную

1) Заменяем каждую цифру данного восьмеричного числа соответствующим ей двоичным эквивалентом.

2) Если до полной тройки не хватает цифр, то в данной тройке добавляем недостающее количество нулей слева.

Перевод чисел из шестнадцатеричной системы счисления в двоичную

1) Заменяем каждую цифру данного шестнадцатеричного числа соответствующим ей двоичным эквивалентом.

2) Если до полной четверки не хватает цифр, то в данной четверке добавляем недостающее количество нулей справа.

Необычные позиционные системы счисления

Необычные счисления не находят широкого применения, однако они могут быть интересными с точки зрения теории. Среди необычных систем счисления можно выделить: счисление позиционный символический знак

· системы счисления с ненатуральными основаниями

o отрицательными,

o иррациональными,

o комплексными (напр.: 1 + i);

· системы счисления с несколькими основаниями;

o вложенными (двоично-десятичная, десятично-шестидесятеричная и др.)

· системы счисления с нестандартными наборами цифр:

с набором цифр, симметричным относительно нуля.

Системы счисления с отрицательными основаниями

Отрицательные основания позволяют выражать отрицательные числа без введения дополнительного символа для знака. Для выражения чисел используется тот же набор цифр, что и для системы с равным по модулю натуральным основанием. Таким образом, нечётные разряды числа имеют отрицательный вес.

Системы счисления с иррациональным основанием

Иррациональное число вида можно выразить в системе счисления с иррациональным основанием, употребив цифры.

Системы счисления с комплексным основанием

Подобно системам с отрицательным основаниям, комплексные основания позволяют выражать комплексные числа.

Для этого основание системы счисления берётся вида:

удовлетворяющее условию -- количество цифр в наборе.

Системы основания с вложенными основаниями

Если цифры системы счисления с большим основанием представить числами в системе счисления с меньшим основанием, то получится особый составной род системы счисления.

Хорошо известна десятично-шестидесятеричная система счисления, используемая для измерения времени -- часы, минуты и секунды, записанные десятичной системой здесь предстают в качестве разрядов шестидесятеричной системы счисления. Эта система пришла из Вавилона, где широко использовалась для записи чисел шестидесятеричная система, основанная всего на трёх клинописных символах:

· вертикльный клин -- единица разряда;

· уголок из клиньев -- десяток разряда;

· наклонный клин -- нуль, пустой разряд;

Двоично-десятичная система счисления используется в вычислительной технике. Двоичные разряды группируются по четыре, где каждая четвёрка (тетрада, ниббл) кодирует одну десятичную цифру. Это позволяет работать с приборами, имеющими десятичную индикацию и ввод без преобразования систем счисления.

Нестандартные наборы цифр, наборы, симметричные относительно нуля

Альтернативным способом записи отрицательных чисел без использования знака минуса (кроме отрицательных оснований) является использование цифр с отрицательным весом. При этом не требуется увеличения количества различных цифр для записи числа -- вместо набора можно использовать любой набор вида.

Замечательным в этом отношении является использование симметричного набора цифр. Если взять систему счисления с нечётным основанием вида 2p + 1, то набор цифр будет иметь вид.

Такой подход нашёл применение в троичных ЭВМ (например, «Сетунь»).

Смешанная система счисления

Смешанная система счисления является обобщением n-ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел, и каждое число в ней представляется как линейная комбинация:

В зависимости от вида ni как функции смешанные системы счисления могут быть степенными, показательными, факториальными, фибоначчиевыми и т. п. Когда для некоторого n, смешанная система счисления совпадает с показательной n-ричной системой счисления.

Самый яркий пример смешанной системы счисления -- это представление времени в виде количества суток, часов, минут и секунд. При этом величина «d дней, h часов, m минут, s секунд» соответствует значению

Непозиционные системы счисления

Непозиционная система счисления -- это система, для которой значение символа, т.е. цифры, не зависит от его положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.

Биномиальная система счисления

В биномиальной системе счисления число x представляется в виде суммы биномиальных коэффициентов:

При всяком фиксированном значении n каждое натуральное число представляется уникальным образом.

Система остаточных классов (СОК)

Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках. СОК определяется набором попарно взаимно простых модулей с произведением так, что каждому целому числу из отрезка ставится в соответствие набор вычетов, где

СОК гарантирует однозначность представления для чисел из отрезка

В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в .

Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленных в СОК.

Исторические системы счисления

Единичная система счисления

Хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком -- так возникают прообразы будущих цифр.

Пятеричная система счисления (Счёт на пятки м)

Существовал в России. Применялся в народе как минимум до конца XVIII -- начала XIX вв.

Древнеегипетская система счисления

Древнеегипетская десятичная непозиционная система счисления возникла во второй половине третьего тысячелетия до н. э. Для обозначения чисел 0, 1, 10, 102, 103, 104, 105, 106, 107 использовались специальные цифры. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из цифр повторялась не более девяти раз. Значение числа равно простой сумме значений цифр, участвующих в его записи.

Алфавитные системы счисления

Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.

Римская система счисления

Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы:

I обозначает 1,

Римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё.

Система счисления майя

Майя использовали 20-ричную систему счисления за одним исключением: во втором разряде было не 20, а 18 ступеней, то есть за числом 17 19 сразу следовало число 1 0 0. Это было сделано для облегчения расчётов календарного цикла, поскольку 1 0 0 = 360 примерно равно числу дней в солнечном году.

Для записи основными знаками были точки (единицы) и отрезки (пятёрки).

Кипу инков

Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I--II тысячелетии н. э., была узелковая письменность Инков -- кипу, состоявшая как из числовых записей десятичной системы, так и не числовых записей в двоичной системе кодирования. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта как двойная запись.

Список используемой литературы

1. А. Г. Цыпкин. "Справочник по математике для средних учебных заведений"

Размещено на Allbest.ru

...

Подобные документы

    Понятие и математическое содержание систем счисления, их разновидности и сферы применения. Отличительные признаки и особенности позиционных и непозиционных, двоичных и десятичных систем счисления. Порядок перевода чисел из одной системы в другую.

    презентация , добавлен 10.11.2010

    Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.

    реферат , добавлен 09.07.2009

    Исследование истории систем счисления. Описание единичной и двоичной систем счисления, древнегреческой, славянской, римской и вавилонской поместной нумерации. Анализ двоичного кодирования в компьютере. Перевод чисел из одной системы счисления в другую.

    контрольная работа , добавлен 04.11.2013

    Совокупность приемов и правил записи и чтения чисел. Определение понятий: система счисления, цифра, число, разряд. Классификация и определение основания систем счисления. Разница между числом и цифрой, позиционной и непозиционной системами счисления.

    презентация , добавлен 15.04.2015

    Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.

    курсовая работа , добавлен 29.04.2017

    Математическая теория чисел. Понятие систем счисления. Применения двоичной системы счисления. Компьютерная техника и информационные технологии. Алфавитное неравномерное двоичное кодирование. Достоинства и недостатки двоичной системы счисления.

    реферат , добавлен 25.12.2014

    История развития систем счисления. Непозиционная, позиционная и десятичная система счисления. Использование систем счисления в компьютерной технике и информационных технологиях. Двоичное кодирование информации в компьютере. Построение двоичных кодов.

    курсовая работа , добавлен 21.06.2010

    Ознакомление с записью чисел в алфавитной системе счисления. Особенности установления числовых значений букв у славянских народов. Рассмотрение записи больших чисел в славянской системе счисления. Обозначение "тем", "легионов", "леордов" и "колод".

    презентация , добавлен 30.09.2012

    Определения системы счисления, числа, цифры, алфавита. Типы систем счисления. Плюсы и минусы двоичных кодов. Перевод шестнадцатеричной системы в восьмеричную и разбитие ее на тетрады и триады. Решение задачи Баше методом троичной уравновешенной системы.

    презентация , добавлен 20.06.2011

    Сущность двоичной, восьмеричной и шестнадцатиричной систем счисления, их отличительные черты и взаимосвязь. Пример алгоритмов перевода чисел из одной системы в другую. Составление таблицы истинности и логической схемы для заданных логических функций.

Единичная система счисления

Необходимость в записи чисел стала возникать у людей еще в древности после того, как они научились считать. Свидетельством этого являются археологические находки в местах стойбищ первобытных людей, которые относятся к периоду палеолита ($10$-$11$ тыс. лет до н.э.). Изначально количество предметов изображали, используя определенные знаки: черточки, насечки, кружочки, нанесенные на камни, дерево или глину, а также узлы на веревках.

Рисунок 1.

Ученые эту систему записи чисел называют единичной (унарной) , поскольку число в ней образовано повторением одного знака, который символизирует единицу.

Недостатки системы:

Позднее, чтобы облегчить счет, эти знаки люди стали объединять.

Пример 1

С примерами использования единичной системы счисления можно встретится и в нашей жизни. Например, маленькие дети пытаются изобразить на пальцах сколько им лет, или же счетные палочки используют для обучения счету в первом классе.

Единичная система не совсем удобна, так как записи выглядят очень длинно и их нанесение довольно утомительно, поэтому со временем стали появляться более практичые в использовании системы счисления.

Вот некоторые примеры.

Древнеегипетская десятичная непозиционная система счисления

Данная система счисления появилась около 3000 лет до н.э. в результате того, что жители Древнего Египта придумали свою числовую систему, в которой при обозначении ключевых чисел $1$, $10$, $100$ и т.д. были использованы иероглифы, что было удобным при написании на глиняных дощечках, которые заменяли бумагу. Другие числа составлялись из них с помощью сложения. Сначала записывалось число высшего порядка, а затем низшего. Умножали и делили египтяне, последовательно удваивая числа. Каждая цифра могла повторяться до $9$ раз. Примеры чисел данной системы приведены ниже.

Рисунок 2.

Римская система счисления

Данная система принципиально не намного отличается от предыдущей и сохранилась до наших дней. В ее основе находятся знаки:

    $I$ (один палец) для числа $1$;

    $V$ (раскрытая ладонь) для числа $5$;

    $X$ (две сложенные ладони) для $10$;

    для обозначения чисел $100$, $500$ и $1000$ использовались первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча).

При составлении чисел римляне использовали следующие правила:

    Число равно сумме значений расположенных подряд нескольких одинаковых «цифр», образующих группу первого вида.

    Число равно разности значений двух «цифр», если слева от большей стоит меньшая. В этом случае от значения большей отнимается значение меньшей. Вместе они образуют группу второго вида. При этом левая «цифра» может быть меньше правой максимально на $1$ порядок: перед $L(50)$ и $C(100$) из «младших» может стоять только $Х(10$), перед $D(500$) и $M(1000$) – только $C(100$), перед $V(5) – I(1)$.

    Число равно сумме значений групп и «цифр», не вошедших в группы $1$ или $2$ вида.

Рисунок 3.

Римскими цифрами пользуются издревле: ими обозначаются даты, номера томов, разделов, глав. Раньше считал, что обычные арабские цифры можно легко подделать.

Алфавитные системы счисления

Данные системы счисления более совершенны. К ним относятся греческая, славянская, финикийская, еврейская и другие. В этих системах числа от $1$ до $9$, а также количество десятков (от $10$ до $90$), сотен (от $100$ до $900$) были обозначены буквами алфавита.

В древнегреческой алфавитной системе счисления числа $1, 2, ..., 9$ обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел $10, 20, ..., 90$ применялись следующие $9$ букв а для обозначения чисел $100, 200, ..., 900$ – последние $9$ букв.

У славянских народов числовые значения букв устанавливались в соответствии с порядком славянского алфавита, использовавшего изначально глаголицу, а затем кириллицу.

Рисунок 4.

Замечание 1

Алфавитная система использовалась и в древней Руси. До конца $XVII$ века в качестве цифр использовались $27$ букв кириллицы.

Непозиционные системы счисления имеют ряд существенных недостатков:

    Существует постоянная потребность введения новых знаков для записи больших чисел.

    Невозможно представлять дробные и отрицательные числа.

    Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

Основные понятия систем счисления

Система счисления - это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Количество цифр, необходимых для записи числа в системе, называют основанием системы счисления. Основание системы записывается в справа числа в нижнем индексе: ; ; и т. д.

Различают два типа систем счисления:

позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа;

непозиционные, когда значение цифры в числе не зависит от ее места в записи числа.

Примером непозиционной системы счисления является римская: числа IX, IV, XV и т.д. Примером позиционной системы счисления является десятичная система, используемая повседневно.

Любое целое число в позиционной системе можно записать в форме многочлена:

где S - основание системы счисления;

Цифры числа, записанного в данной системе счисления;

n - количество разрядов числа.

Пример. Число запишется в форме многочлена следующим образом:

Виды систем счисления

Римская система счисления является непозиционной системой. В ней для записи чисел используются буквы латинского алфавита. При этом буква I всегда означает единицу, буква - V пять, X - десять, L - пятьдесят, C - сто, D - пятьсот, M - тысячу и т.д. Например, число 264 записывается в виде CCLXIV. При записи чисел в римской системе счисления значением числа является алгебраическая сумма цифр, в него входящих. При этом цифры в записи числа следуют, как правило, в порядке убывания их значений, и не разрешается записывать рядом более трех одинаковых цифр. В том случае, когда за цифрой с большим значением следует цифра с меньшим, ее вклад в значение числа в целом является отрицательным. Типичные примеры, иллюстрирующие общие правила записи чисел в римской система счисления, приведены в таблице.

Таблица 2. Запись чисел в римской системе счисления

III

VII

VIII

XIII

XVIII

XIX

XXII

XXXIV

XXXIX

XCIX

200

438

649

999

1207

CDXXXVIII

DCXLIX

CMXCIX

MCCVII

2045

3555

3678

3900

3999

MMXLV

MMMDLV

MMMDCLXXVIII

MMMCM

MMMCMXCIX

Недостатком римской системы является отсутствие формальных правил записи чисел и, соответственно, арифметических действий с многозначными числами. По причине неудобства и большой сложности в настоящее время римская система счисления используется там, где это действительно удобно: в литературе (нумерация глав), в оформлении документов (серия паспорта, ценных бумаг и др.), в декоративных целях на циферблате часов и в ряде других случаев.

Десятичня система счисления – в настоящее время наиболее известная и используемая. Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника. Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Люди привыкли считать в десятичной системе счисления, потому что у них по 10 пальцев на руках.

Древнее изображение десятичных цифр (рис. 1) не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 - углов нет, 1 - один угол, 2 - два угла и т.д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Десятичная система впервые появилась в Индии примерно в VI веке новой эры. Индийская нумерация использовала девять числовых символов и нуль для обозначения пустой позиции. В ранних индийских рукописях, дошедших до нас, числа записывались в обратном порядке - наиболее значимая цифра ставилась справа. Но вскоре стало правилом располагать такую цифру с левой стороны. Особое значение придавалось нулевому символу, который вводился для позиционной системы обозначений. Индийская нумерация, включая нуль, дошла и до нашего времени. В Европе индусские приёмы десятичной арифметики получили распространение в начале ХIII в. благодаря работам итальянского математика Леонардо Пизанского (Фибоначчи). Европейцы заимствовали индийскую систему счисления у арабов, назвав ее арабской. Это исторически неправильное название удерживается и поныне.

Десятичная система использует десять цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также символы “+” и “–” для обозначения знака числа и запятую или точку для разделения целой и дробной частей числа.

В вычислительных машинах используется двоичная система счисления, её основание - число 2. Для записи чисел в этой системе используют только две цифры - 0 и 1. Вопреки распространенному заблуждению, двоичная система счисления была придумана не инженерами-конструкторами ЭВМ, а математиками и философами задолго до появления компьютеров, еще в ХVII - ХIХ веках. Первое опубликованное обсуждение двоичной системы счисления принадлежит испанскому священнику Хуану Карамюэлю Лобковицу (1670 г.). Всеобщее внимание к этой системе привлекла статья немецкого математика Готфрида Вильгельма Лейбница, опубликованная в 1703 г. В ней пояснялись двоичные операции сложения, вычитания, умножения и деления. Лейбниц не рекомендовал использовать эту систему для практических вычислений, но подчёркивал её важность для теоретических исследований. Со временем двоичная система счисления становится хорошо известной и получает развитие.

Выбор двоичной системы для применения в вычислительной технике объясняется тем, что электронные элементы - триггеры, из которых состоят микросхемы ЭВМ, могут находиться только в двух рабочих состояниях.

С помощью двоичной системы кодирования можно зафиксировать любые данные и знания. Это легко понять, если вспомнить принцип кодирования и передачи информации с помощью азбуки Морзе. Телеграфист, используя только два символа этой азбуки - точки и тире, может передать практически любой текст.

Двоичная система удобна для компьютера, но неудобна для человека: числа получаются длинными и их трудно записывать и запоминать. Конечно, можно перевести число в десятичную систему и записывать в таком виде, а потом, когда понадобится перевести обратно, но все эти переводы трудоёмки. Поэтому применяются системы счисления, родственные двоичной - восьмеричная и шестнадцатеричная. Для записи чисел в этих системах требуется соответственно 8 и 16 цифр. В 16-теричной первые 10 цифр общие, а дальше используют заглавные латинские буквы. Шестнадцатеричная цифра A соответствует десятеричному числу 10, шестнадцатеричная B – десятичному числу 11 и т. д. Использование этих систем объясняется тем, что переход к записи числа в любой из этих систем от его двоичной записи очень прост. Ниже приведена таблица соответствия чисел, записанных в разных системах.

Таблица 3. Соответствие чисел, записанных в различных системах счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

001

010

011

100

101

110

111

1000

1001

1010

1011

1100

1101

D http://viagrasstore.net/generic-viagra-soft/

1110

1111

10000

Правила перевода чисел из одной системы счисления в другую

Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней двойки:

Таблица 4. Степени числа 2

n (степень)

1024

Пример. Число перевести в десятичную систему счисления.

2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней восьмерки:

Таблица 5. Степени числа 8

n (степень)

Лабораторная работа 1. «Системы счисления»

Система счисления – это правила записи чисел с помощью заданного набора специальных знаков – цифр.

Людьми использовались различные способы записи чисел, которые можно объединить в несколько групп: унарная, непозиционные и позиционные.

Две первые представляют скорее исторический интерес, поскольку имеют весьма ограниченное применение в настоящее время.

Унарная система счисления

Унарная система счисления – это система счисления, в которой для записи чисел используется только один знак – 1 («палочка»).

Следующее число получается из предыдущего добавлением новой 1; их количество (сумма) равно самому числу.

Именно такая система применяется для начального обучения счету детей (можно вспомнить «счетные палочки»).

Другими словами, использование именно унарной системы оказывается важным педагогическим приемом для введения детей в мир чисел и действий с ними.

Непозиционные система счисления

Непозиционная система счисления - система, в которой символы, обозначающие то или иное количество, не меняют сво­его значения в зависимости от местоположения (позиции) в изоб­ражении числа.

Из непозиционных наиболее распространенной можно считать римскую систему счисления.

В ней некоторые базовые числа обозначены заглавными латинскими буквами:

1 – I, 5 – V, 10 – X, 50 – L , 100 – C, 500 – D, 1000 – M.

Все другие числа строятся из комбинаций базовых, причем:

    если цифра слева меньше, чем цифра справа, то левая цифра вычитается из правой;

    если цифра справа меньше или равна цифре слева, то эти цифры складываются;

Запись чисел в такой системе громоздка и неудобна, но еще более неудобным оказывается выполнение в ней даже самых простых арифметических операций.

Наконец, отсутствие нуля и знаков для чисел больше M не позволяют римскими цифрами записать любое число (хотя бы натуральное). Используется эта система для нумерации.

Позиционные системы счисления

Позиционными называются системы счисления, в которых значение каждой цифры в изображении числа определяется ее положением (позицией) в ряду других цифр.

Упорядоченный набор символов (цифр) 0 , a v ..., а п ), используемый для представления любых чисел в заданной позиционной си­стеме счисления, называют ееалфавитом, число символов (цифр)алфавита р = п + 1 - ее основанием, а саму систему счисления называютр -ричной.

Основание позиционной системы счисления - количестворазличных цифр, используемых для изображения чисел в данной системе счисления.

Самой привычной для нас является десятичная система счисле­ния. Ее алфавит - {0, 1, 2, 3, 4, 5, б, 7, 8, 9}, а основание р = 10, т. е. в этой системе для записи любых чисел используется только десятьразных символов (цифр). Десятичная система счисления основана на том, что 10 единиц каж­дого разряда объединяются в одну единицу соседнего старшего разряда, поэтому каждый разряд имеет вес, равный степени 10. Сле­довательно, значение одной и той же цифры определяется ее местоположением в изображении числа, характеризуемым степенью числа 10. Например, в изображении числа 222.22 цифра 2 повторяется5 раз, при этом первая слева цифра 2 означает количество сотен (ее вес равен 10 2); вторая - количество десятков (ее вес равен 10 1), третья - количество единиц (ее вес равен 10 0), четвертая - количество десятых долей единицы (ее вес равен 10 -1) и пятая цифра - количество сотых долей единицы (ее вес равен 10 -2), т. е. число 222.22 может быть разложено по степеням числа 10:

222.22 = 2 10 2 + 2 10 1 + 2 10° + 2 10 -1 + 2 10 -2 .

Аналогично 725 = 7 10 2 + 2 10 1 + 5 10°;

1304.5 = 1 10 3 + 3 10 2 + 0 10 1 + 4 10° + 5 10 -1 ,

50328.15 = 5 10 4 + 0 10 3 + 3 10 2 + 2 10 1 + 8 10° + 1 10 -1 + 5 10 -2 .

В общем случае для задания р -ричной системы счисления необходимо определить основание р и алфавит, состоящий из р различ­ных символов (цифр)а р i = 1,...,р.

Любое число X p можно представить в виде поли­нома путем разложения его по степеням числаp :

последовательность из коэффициентов которого представляет со­бой сокращенную запись числа X p :

Точка, отделяющая целую часть числа от дробной, служит для фиксации конкретных значений каждой позиции в этой последо­вательности цифр и является началом отсчета.

Методы перевода чисел. Представление чисел в различных системах счисления

Перевод чисел из одной системы счисления в другую

Одно и то же число может быть записано в различных системах счисления.

Алгоритм перевода целых чисел из q -ричной системы в p -ричную, при q > p

Для замены исходного числа X q равным ему числом X p нужно по правилам q -ричной арифметики целочисленно делить X q на новое основание p . Результаты деления, записанные в порядке от последнего к первому, и окажутся цифрами X p .

Поскольку коэффициенты многочлена неизвестны, обозначим их a i ; получаем:

Обычно описанную процедуру представляют в виде привычной по школе операции деления:

Таким образом, получили X 5 =443.

Проверяем правильность перевода: 4*5 2 +4*5 1 +3*5 0 =100+20+3=123 10 .

Второе, на что нужно обратить внимание – все операции выполнялись по правилам арифметики той системы счисления, от которой осуществлялся перевод (в рассмотренном примере – десятичной).

Алгоритм перевода целых чисел из q -ричной системы в p -ричную, при q < p

Для перевода необходимо представить число X q p -ричной арифметики.

X 6  X 10 , Х= 234 6

234 6 = 26 2 +36 1 +46 0 = 236+36+41 = 94 10

Приведенными алгоритмами удобно пользоваться при переводе числа из десятичной системы в какую-то иную или наоборот.

Они работают и для перевода между любыми иными системами счисления, однако, такой перевод будет затруднен тем, что все арифметические операции необходимо осуществлять по правилам исходной (в первом алгоритме) или конечной (во втором алгоритме) системы.

По этой причине переход, например X 3  X 8 проще осуществить через промежуточный переход к 10-ной системе X 3  X 10  X 8 .

Алгоритм перевода правильной дроби при q > p

Результатом перевода правильной дроби 0,X q будет также правильная дробь 0,X p , которая получится в результате умножения исходной дроби на новое основание p по правилам q -ричной арифметики; целая часть полученного произведения будет цифрой старшего разряда новой дроби; дробную часть полученного произведение следует снова умножить на p и т.д.

Пример: 0,X 10  0,X 2 . 0,Х=0,375 10

Тогда для получения 0,X 2:

0,375*2 = 0 ,750

0,75*2 = 1 ,50

0,5*2 = 1 ,0

Таким образом, 0,375 10 = 0,011 2 .

Проверяем 0,011=0*2 -1 +1*2 -2 +1*2 -3 =0,25+1,125=0,375 10

Алгоритм перевода правильной дроби при q < p

Для перевода X q X p необходимо представить число X q в форме многочлена и выполнить все операции по правилам p -ричной арифметики.

Пример: X 6  X 10 , Х 6 =0,234 6

Для этого

0,234 6 = 26 -1 +36 -2 +46 -3 =0,33(3)+0,083(3)+0,01(851)= 0,43517 10

Проверяем:

0, 43517*6=2 ,61102

0, 61102*6=3, 66612

0,66612*6=3,996724 ,0 {погрешность вычислений в случае получения иррациональных чисел}

Пример: X 2  X 10 , Х=0,10101 2

Для этого

0, 10101 2 = 12 -1 +02 -2 +12 -3 +02 -4 +12 -5 = 0,5+0,125+0,03125= 0,65625 10.

Проверяем:

0,65625*2=1 ,3125

0,3125*2=0, 625

0,625*2=1 ,25

0,25*2=0 ,5

0,5*2=1 ,0 . Все верно

Перевод чисел между системами счисления 2 – 8 – 16

Примеры изображения чисел в данных системах счисления приведены в таблице 1

Таблица 1. Системы счисления

десятичная

двоичная

десятичная

двоичная

Для перевода целого двоичного числа в систему счисления с основанием p = 2 r достаточно данное двоичное число, начиная с младшего разряда, разбить на группы в r цифр каждая и каждую группу независимо перевести в систему p .

Например, для перевода числа 110001 2 в систему счисления p=8, нужно разбить исходное число на группы по три разряда справа налево (8 = 2 3 , следовательно, r = 3) и перевести в 8-ричную систему счисления: 110001 2 =61 8 . Проверяем 110001 2 =32+16+1=49 10 , 6*8 1 +1*8 0 =49 10

Аналогично, разбивая на группы по 4 двоичные цифры, получим 110001 2 = 31 16 .

Для перевода целого числа, записанного в системе счисления с основанием p = 2 r , в двоичную систему достаточно каждую цифру исходного числа независимо заменить соответствующим r -разрядным двоичным числом, дополняя его при необходимости незначащими нулями до группы в r цифр.

Пример: представим число D3 16 в двоичной системе счисления:

Пример, 123 8 = 001010011 2 = 53 16 .

Задания для самостоятельного выполнения

    Переведите число X p p-ричной системы счисления вX q q-ричной системы счисления

    X 5  X 10 , где X 5 =123

    X 3  X 10 , где X 3 =102

    X 10  X 4 , где X 10 =123

    X 10  X 6 , где X 10 =548

    X 5  X 3 , где X 3 =421

    X 2  X 6 , где X 2 =0111001

    X 2  X 16 , где X 2 =10011

    X 2  X 8 , где X 2 =101010

    X 16  X 2 , где X 16 =AD3

    X 8  X 2 , где X 8 =5470

II. Переведите десятичное число в двоичное:

    743 10 , b) 334.12 10 , c) 61.375, d) 160.25 10 , e) 131.82 10

III. Переведите десятичное число в шестнадцатеричное число:

    445 10 , b) 334.12 10 , c) 261.375, d) 160.25 10 , e) 131.82 10

На ранних ступенях развития общества люди почти не умели считать. Они различали совокупности двух и трех предметов; всякая совокупность, содержавшая бóльшее число предметов, объединялась в понятии «много». Предметы при счете сопоставлялись обычно с пальцами рук и ног. По мере развития цивилизации потребность человека в счете стала необходимой. Первоначально натуральные числа изображались с помощью некоторого количества черточек или палочек, затем для их изображения стали использовать буквы или специальные знаки. В древнем Новгороде использовалась славянская система, где применялись буквы славянского алфавита; при изображении чисел над ними ставился знак ~ (титло).

Древние римляне пользовались нумерацией, сохраняющейся до настоящего времени под именем «римской нумерации», в которой числа изображаются буквами латинского алфавита. Сейчас ею пользуются для обозначения юбилейных дат, нумерации некоторых страниц книги (например, страниц предисловия), глав в книгах, строф в стихотворениях и т.д. В позднейшем своем виде римские цифры выглядят так:

I = 1; V = 5; X = 10; L = 50; С = 100; D = 500; M = 1000.

О происхождении римских цифр достоверных сведений нет. Цифра V могла первоначально служить изображением кисти руки, а цифра Х могла составиться из двух пятерок. В римской нумерации явственно сказываются следы пятеричной системы счисления. Все целые числа (до 5000) записываются с помощью повторения вышеприведенных цифр. При этом, если бóльшая цифра стоит перед меньшей, то они складываются, если же меньшая стоит перед бóльшей (в этом случае она не может повторяться), то меньшая вычитается из бóльшей). Например, VI = 6, т.е. 5 + 1, IV = 4, т.е. 5 – 1, XL = 40, т е. 50 – 10, LX = 60, т.е. 50 + 10. Подряд одна и та же цифра ставится не более трех раз: LXX = 70; LXXX = 80; число 90 записывается ХС (а не LXXXX).

Первые 12 чисел записываются в римских цифрах так:

I, II, III, IV, V, VI, VII, VIII. IX, X, XI, XII.

Другие же числа записываются, например, как:

XXVIII = 28; ХХХIХ = 39; CCCXCVII = 397; MDCCCXVIII = 1818.

Выполнение арифметических действий над многозначными числами в этой записи очень трудно. Тем не менее, римская нумерация преобладала в Италии до 13 в., а в других странах Западной Европы – до 16 в.

В славянской системе нумерации для записи чисел использовались все буквы алфавита, правда, с некоторым нарушением алфавитного порядка. Различные буквы означали различное количество единиц, десятков и сотен. Например, число 231 записывалось в виде ~ СЛА (C – 200, Л – 30, А – 1).

Этим системам свойственны два недостатка, которые привели к их вытеснению другими: необходимость большого числа различных знаков, особенно для изображения больших чисел, и, что еще важнее неудобство выполнения арифметических операций.

Более удобной и общепринятой и наиболее распространенной является десятичная система счисления, которая была изобретена в Индии, заимствована там арабами и затем через некоторое время пришла в Европу. В десятичной системе счисления основанием является число 10.

Существовали системы исчисления и с другими основаниями. В Древнем Вавилоне, например, применялась шестидесятеричная система счисления. Остатки ее мы находим в сохранившемся до сих пор делении часа или градуса на 60 минут, а минуты – на 60 секунд.

Широкое распространение имела в древности и двенадцатеричная система, происхождение которой, вероятно, связано, как и десятичной системы, со счетом на пальцах: за единицу счета принимались фаланги (отдельные суставы) четырех пальцев одной руки, которые при счете перебирались большим пальцем той же руки. Остатки этой системы счисления сохранились и до наших дней и в устной речи, и в обычаях. Хорошо известно, например, название единицы второго разряда – числа 12 – «дюжина». Сохранился обычай считать многие предметы не десятками, а дюжинами, например, столовые приборы в сервизе или стулья в мебельном гарнитуре. Название единицы третьего разряда в двенадцатеричной системе – гросс – встречается теперь редко, но в торговой практике начала столетия оно еще бытовало. Например, в написанном в 1928 стихотворении Плюшкин В.В.Маяковский, высмеивая людей, скупающих все подряд, писал: «...укупил двенадцать гроссов дирижерских палочек». У ряда африканских племен и в Древнем Китае была употребительна пятеричная система счисления. В Центральной Америке (у древних ацтеков и майя) и среди населявших Западную Европу древних кельтов была распространена двадцатеричная система. Все они также связаны со счетом на пальцах.

Самой молодой системой счисления по праву можно считать двоичную. Эта система обладает рядом качеств, делающей ее очень выгодной для использования в вычислительных машинах и в современных компьютерах.

Позиционные и непозиционные системы счисления.

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами.

В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе называется позицией. Первая известная нам система, основанная на позиционном принципе – шестидесятeричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим – десятки.

Однако наиболее употребительной оказалась индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной, так как в ней десять цифр.

Различие между позиционой и непозиционной систем счисления легче всего понять на примере сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в рассматриваемых числах слева направо сравниваются цифры, стоящие в одинаковых позициях. Бóльшая цифра соответствует бóльшему значению числа. Например, для чисел 123 и 234, 1 меньше 2, поэтому число 234 больше, чем число 123. В непозиционной системе счисления это правило не действует. Примером этого может служить сравнение двух чисел IX и VI. Несмотря на то, что I меньше, чем V, число IX больше, чем число VI.

Позиционные системы счисления.

Основание системы счисления, в которой записано число, обычно обозначается нижним индексом. Например, 555 7 – число, записанное в семеричной системе счисления. Если число записано в десятичной системе, то основание, как правило, не указывается. Основание системы – это тоже число, и его мы будем указывать в обычной десятичной системе. Вообще, число x может быть представлено в системе с основанием p , как x = a n ·p n +a n – 1·p n –1 + a p 1 + a p 0, где a n ...a 0 – цифры в представлении данного числа. Так, например,

1035 10 =1·10 3 + 0·10 2 + 3·10 1 + 5·10 0 ;

1010 2 = 1·2 3 + 0·2 2 + 1·2 1 + 0·2 0 = 10.

Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Вообще говоря, этих систем счисления обычно хватает для полноценной работы как человека, так и вычислительной машины, однако иногда в силу различных обстоятельств все-таки приходится обращаться к другим системам счисления, например к троичной, семеричной или системе счисления по основанию 32.

Чтобы оперировать с числами, записанными в таких нетрадиционных системах, нужно иметь в виду, что принципиально они ничем не отличаются от привычной десятичной. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме.

Почему же не используются другие системы счисления? В основном, потому, что в повседневной жизни люди привыкли пользоваться десятичной системой счисления, и не требуется никакая другая. В вычислительных же машинах используется двоичная система счисления, так как оперировать числами, записанными в двоичном виде, довольно просто.

Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе. Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются.

Перевод чисел из одной системы счисления в другую.

Наиболее часто встречающиеся системы счисления – это двоичная, шестнадцатеричная и десятичная. Как же связаны между собой представления числа в различных системах счисления? Есть различные способы перевода чисел из одной системы счисления в другую на конкретных примерах.

Пусть нужно перевести число 567 из десятичной в двоичную систему. Сначала определяется максимальная степень двойки, такая, чтобы два в этой степени было меньше или равно исходному числу. В данном случае это 9, т.к. 2 9 = 512, а 2 10 = 1024, что больше начального числа. Таким образом получается число разрядов результата, оно равно 9 + 1 = 10, поэтому результат будет иметь вид 1ххххххххх , где вместо х могут стоять любые двоичные цифры. Вторая цифра результата находится так – двойка возводится в степень 9 и вычитается из исходного числа: 567 – 2 9 = 55. Остаток сравнивается с числом 2 8 = 256. Так как 55 меньше 256, то девятый разряд – нуль, т.е. результат имеет вид 10хххххххх . Рассмотрим восьмой разряд. Так как 2 7 = 128 > 55, то и он будет нулевым.

Седьмой разряд также оказывается нулевым. Искомая двоичная запись числа принимает вид 1000хххххх . 2 5 = 32 ххххх). Для остатка 55 – 32 = 23 справедливо неравенство 2 4 = 16

567 = 1·2 9 + 0·2 8 + 0·2 7 + 0·2 6 + 1·2 5 + 1·2 4 + 0·2 3 + 1·2 2 + 1·2 1 + 1·2 0

При другом способе перевода чисел используется операция деления в столбик. Если взять то же число 567 и разделить его на 2, получается частное 283 и остаток 1. Та же операция производится и с числом 283. Частное – 141, остаток – 1. Опять полученное частное делится на 2 и так до тех пор, пока частное не станет меньше делителя. Теперь, чтобы получить число в двоичной системе счисления, достаточно записать последнее частное, т.е. 1, и приписать к нему в обратном порядке все полученные в процессе деления остатки.

Результат, естественно, не изменился: 567 в двоичной системе счисления записывается как 1 000 110 111.

Эти два способа применимы при переводе числа из десятичной системы в систему с любым основанием. Например, при переводе числа 567 в систему счисления с основанием 16 число сначала разлагается по степеням основания. Искомое число состоит из трех цифр, т.к. 16 2 = 256 хх, где вместо х могут стоять любые шестнадцатеричные цифры. Остается распределить по следующим разрядам число 55 (567 – 512). 3·16 = 48

Второй способ состоит в последовательном делении в столбик, с единственным отличием в том, что делить надо не на 2, а на 16, и процесс деления заканчивается, когда частное становится строго меньше 16.

Конечно, для записи числа в шестнадцатеричной системе счисления, необходимо заменить 10 на A, 11 на B и так далее.

Операция перевода в десятичную систему выглядит гораздо проще, так как любое десятичное число можно представить в виде x = a p n + a p n –1 +... + a n –1·p 1 + a n ·p 0, где a 0 ... a n – это цифры данного числа в системе счисления с основанием p .

Например,так можно перевести число 4A3F в десятичную систему. По определению, 4A3F= 4·16 3 + A·16 2 + 3·16 + F. При замене A на 10, а F на 15, получается 4·16 3 + 10·16 2 + 3·16 + 15= 19007.

Проще всего переводить числа из двоичной системы в системы с основанием, равным степеням двойки (8 и 16), и наоборот. Для того чтобы целое двоичное число записать в системе счисления с основанием 2 n , нужно данное двоичное число разбить справа налево на группы по n -цифр в каждой; если в последней левой группе окажется меньше n разрядов, то дополнить ее нулями до нужного числа разрядов; рассмотреть каждую группу, как n -разрядное двоичное число, и заменить ее соответствующей цифрой в системе счисления с основанием 2 n .

Таблица 1. Двоично-шестнадцатеричная таблица
Таблица 1. ДВОИЧНО-ШЕСТНАДЦАТЕРИЧНАЯ ТАБЛИЦА
2-ная 0000 0001 0010 0011 0100 0101 0110 0111
16-ная 0 1 2 3 4 5 6 7
2-ная 1000 1001 1010 1011 1100 1101 1110 1111
16-ная 8 9 A B C D E F

Известный французский астроном, математик и физик Пьер Симон Лаплас (1749–1827) писал об историческом развитии систем счисления, что «Мысль выражать все числа девятью знаками, придавая им, кроме значения по форме, еще значение по месту, настолько проста, что именно из-за этой простоты трудно понять, насколько она удивительна. Как нелегко было прийти к этому методу, мы видим на примере величайших гениев греческой учености Архимеда и Аполлония, от которых эта мысль осталась скрытой.»

Сравнение десятичной системы исчисления с иными позиционными системами позволило математикам и инженерам-конструкторам раскрыть удивительные возможности современных недесятичных систем счисления, обеспечившие развитие компьютерной техники.

Анна Чугайнова